Math 234

Discuss the following problems with the people at your table.

1. First, replace statements with letters to write the logical form of Argument 1.
$\frac{\text { Argument } 1: p}{\boldsymbol{p}} \underset{\text { This day is sunny or this day is cloudy. }}{ }$.
This day is not cloudy.
Therefore, this day is sunny.

Given that Argument 2 has the same logical form as Argument 1, what statement goes in the blank?

Argument 2: This sport is in the Olympics or this sport is not serious.
$\sim q$: This sport is serious.

2. Define the following statements:
$m=$ "This house has green paint on its exterior."
$n=$ "This house has gold paint on its exterior."
$p=$ "This house is in Wisconsin."
definition of v :

Now write the following statements in symbolic form using the symbols \vee, \wedge, and \sim.
(a) This house has both green and gold paint, but is not in Wisconsin.

$$
(m \wedge n) \wedge \sim p
$$

(b) This house is in Wisconsin and has green or gold paint. (or both)

$$
p \wedge(m \vee n) \equiv p \wedge((m \vee n) \vee(m \wedge n))
$$

(c) This house is in Wisconsin and has green or gold paint, but not both.

$$
p \wedge(m \vee n) \wedge \sim(m \wedge n) \equiv p \wedge(m \oplus n)
$$

(d) This house has neither green nor gold paint.

$$
\sim m \wedge \sim n \equiv \sim(m \cup n) \longleftrightarrow \text { De Morgan's Laws }
$$

(e) This house has neither green nor gold paint but is in Wisconsin.

$$
p \wedge \sim(m \vee n) \equiv(\sim m \wedge \sim n) \wedge p
$$

3. For each of the following statements, determine whether an inclusive or or an exclusive or is intended. Explain your answers.
(a) Coffee or tea comes with dinner.
exclusive - in some cases, inclusive
(b) A password must contain letters and numbers or be at least 8 characters long.
inclusive
(c) The prerequisite for this course is CSCI 221 or MATH 126.
inclusive
(d) Publish or perish.
exclusive
4. Complete the following truth table for the statement $(p \vee q) \vee(\sim p \wedge \sim q)$.

What kind of statement is $(p \vee q) \vee(\sim p \wedge \sim q)$?
tautology
5. For each pair of statements below, create two truth tables to determine whether the statements are logically equivalent.
(a) $\sim(p \vee q) \xrightarrow{\sim} \sim p \wedge \sim q$
de Morgan's
Laws
(b) $\sim(p \wedge q) \sim p \vee \sim q$

6. Come up with a statement form involving p and q that is a contradiction.
7. Express the following statement using logical symbols:

The automated reply cannot be sent when the file system is full.

8. Complete the following truth table to compare the truth values of the statements $p \rightarrow q, q \vee \sim p$, and $p \wedge \sim q$.

$$
(p \rightarrow q) \equiv(q \vee \sim p)
$$

What statement is logically equivalent to $\sim(p \rightarrow q)$? negation of

$$
\sim(p \rightarrow q) \equiv(p \wedge \sim q)
$$ $p \rightarrow q$.

9. Write the negation, converse, inverse, and contrapositive of the following statement.

If you have a ticket, then you can board the flight.
(a) Negation:

It is not the case that
$p \wedge \sim q$ You have a ticket and cannot board the flight.
(b) Converse:
$q \rightarrow p$. If you can band the flight, then you have a ticket.
(c) Inverse:
$\sim p \rightarrow \sim q$ If you don't have a ticket, then you
(d) Contrapositive: cannot board the flight.
$\sim q \rightarrow \sim p$ If you cannot board the flight, then you don't have a ticket.
10. Write the negation, converse, inverse, and contrapositive of the following statement.
(a) Negation:
(b) Converse:

If I take 234, then my major is CS.
F (c) Inverse:
If my major is not CS, then I dor 4 take 234 .
(d) Contrapositive:

If I don't take 234, then my major is not CS.
11. Which of the following are logically equivalent?
a statement
\uparrow
its converse
-
its inverse
9
its contrapositive

12. Determine whether $(p \rightarrow r) \vee(q \rightarrow r)$ and $(p \wedge q) \rightarrow r$ are logically equivalent.

p	q	r	$p \rightarrow r$	$q \rightarrow r$	$(p \rightarrow r) \vee(q \rightarrow r)$	$p \wedge q$	$(p \wedge q) \rightarrow r$
T							
$T \quad T$	F	F	F	F	T	F	
T	F	T	T	T	T	F	T
T	F	F	F	T	T	F	T
$F T$	T	T	T	T	F	T	
$F T$	F	T	F	T	F	T	
F	T	T	T	T	T	F	T
$F F$	F	T	T	T	F	T	

These columns are the same, so:

$$
(p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
$$

