Math 234

Direct Proof and Counterexample
Day 6
Discuss the following problems with the people at your table.

1. Assume that m and n are integers.
(a) Prove that $14 m+6 n+5$ is odd.
(b) Prove that $14 m+6 n-10$ is even.
2. Show by a counterexample that the following statement is false: "For any two prime numbers m and n, the sum $m+n$ is a composite number."
3. In this problem you may use the facts that $(-1)^{2}=1$ and $1^{k}=1$ for any integer k. Write a formal proof of each statement below:
(a) If n is an even integer, then $(-1)^{n}=1$.
(b) If n is an odd integer, then $(-1)^{n}=-1$.
4. Prove or disprove the statement: "If k is an odd integer and m is an even integer, then $k^{2}+m^{2}$ is odd."
5. Is $0.42424242 \ldots$ a rational number? Why or why not?
6. Is $0.123123123 \ldots$ a rational number? Why or why not?
7. Prove the statement: "If k is a rational number and m is a rational number, then $k^{2}+m^{2}$ is a rational number." You may use the fact that if n and j are integers, so is the quantity n^{j}.
8. Let r and s be arbitrary rational numbers. Decide whether each of the following statements is true or false and provide a proof of your assertion.
(a) $3 r+2 s$ is rational.
(b) $19 r-4 s+\frac{r}{s}$ is rational.
9. Suppose a, b, c and d are integers. Also suppose x is a real number that satisfies the equation

$$
\frac{a x+b}{c x+d}=1 .
$$

(a) If the condition that $a \neq c$ is added, decide whether x must be rational and prove the correctness of your assertion.
(b) If we know $a=c$, must x be rational? Prove your answer is correct.
(c) Define the following predicates:
$P(a, b, c, d, x)$ is " x solves the equation $\frac{a x+b}{c x+d}=1$ "
$Q(a, c)$ is " $a=c$ "
$R(x)$ is " x is rational"
Use formal logic notation to express the statement "If $a=c$ and x solves the equation, then x must be rational." What is the negation of this statement? (In this problem you can assume a, b, c and d are understood to be integers. You needn't express this explicitly.)

