Math 234
Direct Proof and Counterexample
Discuss the following problems with the people at your table.

1. Assume that m and n are integers.
(a) Prove that $14 m+6 n+5$ is odd.

Assume m and n are integers.
Consider $14 m+6 n+5$
Let $k=7 m+3 n+2$. Note that k is an integer since integers
Then $14 m+6 n+5=14 m+6 n+4+1=2(7 m+3 n+2)+1$

$$
=2 k+1
$$

So $14 m+6 n+5=\underbrace{2 k+1 \text {, and thus is odd. }}_{\text {by definition of and odd integer }}$
(b) Prove that $14 m+6 n-10$ is even.

Suppose that m and n are arbitrarily chosen integers.
Consider $14 m+6 n-10$.
By algebra, $14 m+6 n-10=2(7 m+3 n-5)$.
Let $k=7 m+3 n-5$.
Then $14 m+6 n-10=2 k$.
So $14 m+6 n-10$ is twice some integer, which implies $14 n+6 n-10$ is even (by definition of ever).
2. Show by a counterexample that the following statement is false: "For any two prime numbers m and n, the sum $m+n$ is a composite number."
$m+n=7$, which is prime.

Another counterexample: 2 and 3 are primes whose sum is also prime.
3. In this problem you may use the facts that $(-1)^{2}=1$ and $1^{k}=1$ for any integer k. Write a formal proof of each statement below:
(a) If n is an even integer, then $(-1)^{n}=1$.

Let n be an even integer. Then $n=2 k$ for some integer k.
Consider $(-1)^{n}$. By algebra,

$$
(-1)^{n}=(-1)^{2 k}=\left((-1)^{2}\right)^{k}=1^{k}=1
$$

Thus, $(-1)^{n}=1$ for any even integer n.
(b) If n is an odd integer, then $(-1)^{n}=-1$.

Let n be an odd integer. So $n=2 k+1$ for some integer k.
Then $(-1)^{n}=(-1)^{2 k+1}=(-1)^{2 k}(-1)=1(-1)=-1$,
where we have used the previous result that $(-1)^{2 k}=1$.
Therefore, $(-1)^{n}=-1$ for any odd integer n.
4. Prove or disprove the statement: "If k is an odd integer and m is an even integer, then $k^{2}+m^{2}$ is odd."

Let k be odd, so $k=2 a+1$ for some integer a.
Let m be even, so $m=26$ for some integer b.
Consider $k^{2}+m^{2}$: by algebra,

$$
k^{2}+m^{2}=(2 a+1)^{2}+(2 b)^{2}=4 a^{2}+4 a+1+4 b^{2}=2\left(2 a^{2}+2 a+2 b^{2}\right)+1
$$

Let $r=2 a^{2}+2 a+2 b^{2}$.
Then $k^{2}+m^{2}=2 r+1$, so $k^{2}+m^{2}$ is odd.
5. Is $0,42424242 \ldots$ a rational number? Why or why not?

Let $x=0.424242 \ldots$ then $100 x=42.424242 \ldots$
Subtract: $100 x=42.4242 \ldots$

$$
\begin{aligned}
-\quad x & =0.4242 \ldots \\
99 x & =42
\end{aligned}
$$

So $x=\frac{42}{99}=\frac{14}{33}$ and thus x is rational.
6. Is $0.123123123 \ldots$ a rational number? Why or why not?
G equals $\frac{123}{999}=\frac{41}{333}$
7. Prove the statement: "If k is a rational number and m is a rational number, then $k^{2}+m^{2}$ is a rational number." You may use the fact that if n and j are integers, so is the quantity n^{j}.

Since k is rational, $k=\frac{a}{b}$ for some integers a and b with $b \neq 0$.
Similarly, $m=\frac{c}{d}$ for some integers c and d with $d \neq 0$.
Then $k^{2}+m^{2}=\left(\frac{a}{b}\right)^{2}+\left(\frac{c}{d}\right)^{2}=\frac{a^{2}}{b^{2}}+\frac{c^{2}}{d^{2}}=\frac{a^{2} d^{2}+c^{2} b^{2}}{b^{2} d^{2}}$
Note that $a^{2} d^{2}+c^{2} b^{2}$ is un integer, and $b^{2} d^{2}$ is a nonzero integer.
Thus, $k^{2}+m^{2}$ is a rational number (def. of rational).
8. Let r and s be arbitrary rational numbers. Decide whether each of the following statements is true or false and provide a proof of your assertion.
(a) $3 r+2 s$ is rational. - TRUE

PRoof: Since r and s are rational, $r=\frac{a}{b}$ and $s=\frac{c}{d}$ for some integers a, b, c, d with $b \neq 0$ and $d \neq 0$.
Then $3 r+2 s=3 \cdot \frac{a}{b}+2 \cdot \frac{c}{d}=\frac{3 a}{b}+\frac{2 c}{d}=\frac{3 a d+2 b c}{b d}$.
Now $3 a d+2 b c$ is an integer and bd is a nonzero integer.
Thus, $3 r+2 s$ is rational.
(b) $19 r-4 s+\frac{r}{s}$ is rational. - TRUE IF $S \neq 0$

PROof: Since r and s are rational, $r=\frac{a}{b}$ and $s=\frac{c}{d}$ for some integers a, b, c, d with $b \neq 0$ and $d \neq 0$.
Assuming that $s \neq 0$, we have $c \neq 0$.
Let $N=19 r-4 s+\frac{r}{s}$.
Then $N=19 \cdot \frac{a}{b}-4 \cdot \frac{c}{d}+\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{19 a}{b}-\frac{4 c}{d}+\frac{a d}{b c}=\frac{19 a c d-4 b c^{2}+a d^{2}}{b c d}$
Observe that $19 a c d-4 b c^{2}+a d^{2}$ is an integer, and bcd is a nonzero integer. Thus, N is rational.
NOTE: if $s=0$, then $19 r-4 s+\frac{r}{s}$ is undefined.
9. Suppose a, b, c and d are integers. Also suppose x is a real number that satisfies the equation

$$
\frac{a x+b}{c x+d}=1 .
$$

(a) If the condition that $a \neq c$ is added, decide whether x must be rational and prove the correctness of your assertion.
(b) If we know $a=c$, must x be rational? Prove your answer is correct.
(c) Define the following predicates:
$P(a, b, c, d, x)$ is " x solves the equation $\frac{a x+b}{c x+d}=1$ "
$Q(a, c)$ is " $a=c$ "
$R(x)$ is " x is rational"
Use formal logic notation to express the statement "If $a=c$ and x solves the equation, then x must be rational." What is the negation of this statement? (In this problem you can assume a, b, c and d are understood to be integers. You needn't express this explicitly.)

