Math 234

Cases, Contradiction, and Contraposition

Day 8

Discuss the following problems with the people at your table.

- 1. Warm-up problems about quotients and remainders:
 - (a) Compute the values of 39 div 15 and 39 mod 15.
 - (b) Compute the values of -27 div 11 and -27 mod 11.
 - (c) Today is a Monday. What day of the week will it be:

Two days from now?

100 days from now?

400 days from now?

2. Prove that for all integers n, $n^2 - n + 3$ is odd.

Sheak this problem into cases.

3.	Prove that	for a	any integer	n,	the quantity	$(n^3 - n)$	(n+2)) is (livisible b	y 4.

🖒 cases?

- 4. Consider the statement: The cube root of any irrational number is irrational.
 - (a) Write the negation of the statement.
 - (b) Show that assuming the negation is true leads to a contradiction.

(c) What does this imply about the original statement?

5.	Let a,b and c be prime numbers greater than two. Use contradiction to prove that $a+b^2 \neq c^2$.	What is the statement we want to prove? What is its negation?
6.	Consider the statement: The negative of any irrational number is irrational.	
	(a) Write this statement in the form " $\forall x \text{ in } D$, if $P(x)$ then $Q(x)$." Then write the contrapositive of this statement.	
	(b) Prove the contrapositive.	
	(c) What does your proof imply about the original statement?	

7.	Using contraposition, prove the following statement: For all integers m and n , if $m+n$ is even, then either both m and n are even or both m and n are odd.
8.	Consider the statement: The sum of any two irrational numbers is irrational.
	(a) What is wrong with the following "proof" of this statement?
	Incorrect proof: Let a and b be any two irrational numbers. The number a cannot be written as the quotient of two integers, nor can b . Therefore, the sum $a+b$ cannot be written as the quotient of two integers, so $a+b$ must be irrational.
	(b) Is the statement true or false? Provide a proof or a counterexample.