Proof techniques for today:
(1) Proof by cases:

To prase: "If A_{1} or A_{2} or A_{3} or... or A_{n}, then C."
It suffices to stow: $\left.\begin{array}{l}A_{1} \rightarrow C \\ A_{2} \rightarrow C\end{array}\right]$ If all of these are

$$
\text { and } \left.\begin{array}{c}
A_{3} \rightarrow C \\
A_{3} \rightarrow C \\
\vdots
\end{array}\right\} \begin{aligned}
& \text { true, the the statement } \\
& \text { is proved. }
\end{aligned}
$$

EXAMPLE: Prove: The square of an odd integer has the form $8 m+1$ for some $m \in \mathbb{Z}$.
Proof: Let n be an old integer. Either $n=4 k+1$ or $n=4 k+3$ for some $k \in \mathbb{Z}$. We will consider both cases separately.
case 1: $n=4 k+1$
Then $n^{2}=(4 k+1)^{2}=16 k^{2}+8 k+1=8\left(2 k^{2}+k\right)+1$, which has the desired form.
CASE 2: $n=4 k+3$
then $n^{2}=(4 k+3)^{2}=16 k^{2}+24 k+9=\left(16 k^{2}+24 k+8\right)+1$ $=8\left(2 k^{2}+3 k+1\right)+1$, when hos the desired from
Thus, the sumer of any odd integer has the form $8 m+1$.
(2) Proof by contradiction
stat: $P(x) \rightarrow Q(x)$

- Suppose the statemat to be proved is false. nag: $P(x) \wedge \sim Q(x)$
- Show that this leads to a contradiction.
(3) Proof by contraposition
- Express statement to be proved as: $\forall x \in D$, if $P(x)$, then $Q(x)$.
- Rewrite as: $\underbrace{\forall x \in D \text {, if } \sim Q(x) \text {, then } \sim P(x)}_{\text {prove this by direct proof }}$

Math 234
Cases, Contradiction, and Contraposition
Discuss the following problems with the people at your table.

1. Warm-up problems about quotients and remainders:
(a) Compute the values of 39 div 15 and $39 \bmod 15$.

39 div $15=2$

$$
39=2(15)+9
$$

$39 \bmod 15=9$
remainder r
(b) Compute the values of -27 div 11 and $-27 \bmod 11$. must be
-27 div $11=-3$
$-27 \bmod 11=6$

$$
-27=-3(11)+6
$$

(c) Today is a Monday. What day of the week will it be:

Two days from now?
wednesday
100 days from now?
Wednesday
400 days from now?

$$
\text { Tuesday } \quad 400 \operatorname{nod} 7=1
$$

$$
n(n-1)+3
$$

2. Prove that for all integers $n, \sqrt{n^{2}-n+3}$ s odd.

Proof: Let $n \in \mathbb{Z}$. Consider 2 cases.
CASE 1: n is odd. This means $n=2 k+1$ for some $k \in \mathbb{Z}$.
Then $n^{2}-n+3=(2 k+1)^{2}-(2 k+1)+3=\left(4 k^{2}+4 k+1\right)-2 k-1+3$
$=4 k^{2}+2 k+3=2\left(2 k^{2}+k+1\right)+1$, which is odd.
CASE 2: n is ever. This means $n=2 k$ for some $k \in \mathbb{Z}$.
Then $n^{2}-n+3=(2 k)^{2}-(2 k)+3=4 k^{2}-2 k+3$
$=2\left(2 k^{2}-k+1\right)+1$, which is odd.
Therefore, $n^{2}-n+3$ is odd for all $n \in \mathbb{Z}$.
3. Prove that for any integer n, the quantity $\left(n^{3}-n\right)(n+2)$ is divisible by 4 .

Proof: Let $n \in \mathbb{Z}$. Consider two cases: n even and n odd.
CASE 1: If n is even, then $n=2 m$ for some $m \in \mathbb{Z}$.
Then $\left(n^{3}-n\right)(n+2)=n\left(n^{2}-1\right)(n+2)=(2 m)\left(4 m^{2}-1\right)(2 m+2)$

$$
=4(m)(4 m-1)(m+1)
$$

which is divisible by 4 .
CASE 2: If n is odd, then $n=2 m+1$ for some $m \in \mathbb{Z}$.
Then $\left(n^{3}-n\right)(n+2)=n\left(n^{2}-1\right)(n+2)=(2 m+1)\left((2 m+1)^{2}-1\right)(2 m+1+2)$

$$
\begin{aligned}
& =(2 m+1)\left(4 m^{2}+4 m+1-1\right)(2 m+3) \\
& =4(2 m+1)\left(m^{2}+m\right)(2 m+3),
\end{aligned}
$$

which is divisible by 4 .
4. Consider the statement: The cube root of any irrational number is irrational.
(a) Write the negation of the statement.

There exists some $x \in \mathbb{R}, x \notin \mathbb{Q}$ such that $\sqrt[3]{x} \in \mathbb{Q}$.
(b) Show that assuming the negation is true leads to a contradiction.

Let $y=\sqrt[3]{x}$. Since $\sqrt[3]{x} \in \mathbb{Q}, y=\frac{a}{b}$ for integer a and b. Then $y^{3}=\frac{a^{3}}{b^{3}}$ is rational.
But $y^{3}=x$, which is not rational.
Thus we hove a contradiction,
So the cube root of any irrational number must be irrational.
(c) What does this imply about the original statement?
it's true!
5. Let a, b and c be prime numbers greater than two. Use contradiction to prove that $a+b^{2} \neq c^{2}$.

Let a, b, c be prime numbers greater than 2 , and suppose that $a+b^{2}=c^{2}$.
Since 2 is the only even prime, a, b, and c must be odd.
Since b is odd, b^{2} is also. odd.
Since a and b^{2} are odd, $a+b^{2}$ is even.
But c is also odd, which means c^{2} is odd.
This is a contradiction, since an even number cannot equal an odd number.
Thus, $a+b^{2} \neq c^{2}$.
6. Consider the statement: The negative of any irrational number is irrational.
(a) Write this statement in the form " $\forall x$ in D, if $P(x)$ then $Q(x)$." Then write the contrapositive of this statement.
stat: $\forall x \in \mathbb{R}$, if $\underbrace{x \notin \mathbb{Q}}_{R(x)}$, then $\frac{-x \notin Q}{Q(x)}$.
Contrapositive: $\forall x \in \mathbb{R}$, if $\underbrace{-x \in \mathbb{Q}}_{\sim \mathbb{Q}(x)}$ (b) Prove the contrapositive. , then $\underbrace{x \in \mathbb{Q}}_{\sim P(x)}$.
Let $x \in \mathbb{R}$ such that $-x \in \mathbb{Q}$.
Then $-x=\frac{a}{b}$ for $a, b \in \mathbb{Z}$.
So $x=\frac{-a}{b} \in \mathbb{Q}$.
(c) What does your proof imply about the original statement?
it's true!
7. Using contraposition, prove the following statement: For all integers m and n, if $m+n$ is even, then either both m and n are even or both m and n are odd.

STATEMENT: $\forall m, n \in \mathbb{Z}$, if $m+n$ is even, then m and n are either both even or both odd.

CONTRAPOSITIVE: $\forall m, n \in \mathbb{Z}$, if m and n have different parity, then $m+n$ is odd. C one is even and the other is odd
Proof: Let m and n be integers with different parity. it doesn't matter $>$ Without loss of generality, let m be even and n be odd. which is even and which is odd, so we can choose) So $m=2 k$ and $n=2 r+1$ for some integers k and r. Then $m+n=2 k+(2 r+1)=2(k+r)+1$, and so $m+n$ is odd.
8. Consider the statement: The sum of any two irrational numbers is irrational.
(a) What is wrong with the following "proof" of this statement?

Incorrect proof: Let a and b be any two irrational numbers. The number a cannot be written as the quotient of two integers, nor can b. Therefore, the sum $a+b$ cannot be written as the quotient of two integers, so $a+b$ must be irrational.
$\tau_{\text {This statement is not justified! }}$
In fact, it's wrong!
see "jumping to a conclusion" on page 121 in the text
(b) Is the statement true or false? Provide a proof or a counterexample.
counterexample: $\quad a=\sqrt{2}$ and $b=2-\sqrt{2}$ are both irrational, but $a+b=2$ is rational.

