Math 234

Sequences
Discuss the following problems with the people at your table.

1. A sequence is defined by $a_{k}=\frac{k}{2 k+6}$. Write the terms a_{1}, a_{2}, a_{3}, and a_{4}.
2. Find an explicit formula for each sequence $a_{1}, a_{2}, a_{3}, \ldots$ below.
(a) $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots$
(b) $\frac{2}{2}, \frac{4}{3}, \frac{6}{4}, \frac{8}{5}, \frac{10}{6}, \ldots$
(c) $1, \frac{4}{3}, \frac{3}{2}, \frac{8}{5}, \frac{5}{3}, \ldots$
(d) $\frac{-1}{3}, \frac{1}{6}, \frac{-1}{11}, \frac{1}{18}, \frac{-1}{27}, \ldots$
(e) $\frac{1}{3}, \frac{-2}{7}, \frac{3}{13}, \frac{-4}{21}, \frac{5}{31}, \ldots$
3. Compute the sum $\sum_{m=0}^{3} \frac{1}{2^{m}}$.
4. Compute the product $\prod_{k=1}^{3}\left(1+\frac{1}{k}\right)$
5. Write the following in summation notation:

$$
\left(1^{5}-1\right)+\left(2^{5}-1\right)+\left(3^{5}-1\right)+\left(4^{5}-1\right)+\left(5^{5}-1\right)
$$

6. Write the following in product notation:

$$
\left(\frac{2}{4}\right)\left(\frac{3}{5}\right)^{2}\left(\frac{4}{6}\right)^{3}\left(\frac{5}{7}\right)^{4}
$$

7. Transform the following by making the change of variables $j=i-1$

$$
\sum_{i=1}^{n-1} \frac{1}{(n-i)^{2}}
$$

8. Transform the following by making the change of variables $k=i+1$

$$
\sum_{i=0}^{n} \frac{i}{i^{2}+1}
$$

9. Simplify the expressions:
(a) $\frac{100!}{98!}$
(b) $\frac{n!}{(n-3)!}$
(c) $\frac{n!}{(n-k)!}$
10. Compute the value of the combinations:
(a) $\binom{10}{8}$
(b) $\binom{n}{n-2}$

E assume
$n \geq 2$

11. Bonus:

(a) Prove that $n!+2$ is even for all integers $n \geq 2$.
(b) Prove that $n!+k$ is divisible by k for all integers $n \geq 2$ and $k \in\{2,3, \ldots, n\}$.
(c) Given any integer $m \geq 2$, does there exist a sequence of $m-1$ consecutive positive integers none of which is prime? Explain.

