Discuss the following problems with the people at your table.

1. A sequence is defined by $a_{k}=\frac{k}{2 k+6}$. Write the terms a_{1}, a_{2}, a_{3}, and a_{4}.

$$
a_{1}=\frac{1}{8}, \quad a_{2}=\frac{2}{10}=\frac{1}{5}, a_{3}=\frac{3}{12}=\frac{1}{4}, a_{4}=\frac{4}{14}=\frac{2}{7}
$$

2. Find an explicit formula for each sequence $a_{1}, a_{2}, a_{3}, \ldots$ below.
(a) $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots$

$$
a_{k}=\frac{1}{k^{2}}
$$

(b) $\frac{2}{2}, \frac{4}{3}, \frac{6}{4}, \frac{8}{5}, \frac{10}{6}, \ldots$

$$
a_{k}=\frac{2 k}{k+1}
$$

same!
(c) $1, \frac{4}{3}, \frac{3}{2}, \frac{8}{5}, \frac{5}{3}, \ldots \quad a_{k}=\frac{2 k}{k+1}=\frac{2(k+1)-2}{k+1}$
parentheses are important!
(d) $\frac{-1}{3}, \frac{1}{6}, \frac{-1}{11}, \frac{1}{18}, \frac{-1}{27}, \ldots$

$$
a_{k}=(-1)^{k} \frac{1}{k^{2}+2} \quad \frac{(-1)^{k}}{k^{2}+2}
$$

(e) $\frac{1}{3}, \frac{-2}{7}, \frac{3}{13}, \frac{-4}{21}, \frac{5}{31}, \ldots$

$$
a_{k}=\frac{k(-1)^{2-1}}{k^{2} k+1}=\frac{k(-1-1)-1}{k(k))^{k}+1}
$$

3. Compute the sum $\sum_{m=0}^{3} \frac{1}{2^{m}}$.

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{15}{8}
$$

4. Compute the product $\prod_{k=1}^{3}\left(1+\frac{1}{k}\right)$

$$
\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)=4
$$

5. Write the following in summation notation:

$$
\left(1^{5}-1\right)+\left(2^{5}-1\right)+\left(3^{5}-1\right)+\left(4^{5}-1\right)+\left(5^{5}-1\right)
$$

$$
\sum_{m=1}^{5}\left(m^{5}-1\right)
$$

6. Write the following in product notation:

$$
\begin{aligned}
& \left(\frac{2}{4}\right)\left(\frac{3}{5}\right)^{2}\left(\frac{4}{6}\right)^{3}\left(\frac{5}{7}\right)^{4} \\
& \prod_{k=2}^{5}\left(\frac{k}{k+2}\right)^{k-1}=\prod_{k=1}^{4}\left(\frac{k+1}{k+3}\right)^{k}
\end{aligned}
$$

7. Transform the following by making the change of variables $j=i-1$

If $i=1$, the $j=0$.
If $i=n-1$, then $j=n-2$

$$
\sum_{m=1}^{n} \breve{b}_{j+1+i}=i
$$

$$
\sum_{j=0}^{n-2} \frac{1}{(n-(j+1))^{2}}
$$

8. Transform the following by making the change of variables $k=i+1$

If $i=0$, then $k=1$.

$$
\sum_{i=0}^{n} \frac{i}{i^{2}+1}=0+\frac{1}{2}+\ldots+\frac{n}{n^{2}+1}
$$

If $i=n$, then $k=n+1$.

$$
\sum_{k=1}^{n+1} \frac{k-1}{(k-1)^{2}+1}=\frac{0}{1}+\frac{1}{2}+\cdots+\frac{n}{n^{2}+1}
$$

9. Simplify the expressions:

(b) $\frac{n!}{(n-3)!}=n(n-1)(n-2)$
(c) $\frac{n!}{(n-k)!}=n(n-1)(n-2) \cdots(n-(k-1))$
10. Compute the value of the combinations:
(9) $\binom{(0)}{8}=\frac{10!}{8!2!}=\frac{10(9)}{2}=45$

> "n choose k"
(b) $\binom{n}{n-2}=\frac{n!}{(n-2)!2!}=\frac{n(n-1)}{2}$
11. Bonus:
(a) Prove that $n!+2$ is even for all integers $n \geq 2$.
\& problem 66 in section 5.1 of the textbook
(b) Prove that $n!+k$ is divisible by k for all integers $n \geq 2$ and $k \in\{2,3, \ldots, n\}$.
(c) Given any integer $m \geq 2$, does there exist a sequence of $m-1$ consecutive positive integers none of which is prime? Explain.

