Math 234

Proof by Induction
Day 10
Discuss the following problems with the people at your table.

1. Let's use mathematical induction to prove that for any integer $n \geq 0$,

$$
\sum_{i=0}^{n} 2^{i}=2^{0}+2^{1}+2^{2}+\cdots+2^{n}=2^{n+1}-1
$$

(a) Define the basis statement $P(0)$ for this proof.
(b) Prove the basis statement $P(0)$. (This will be very short.)
(c) Write down the statement $P(k)$, the inductive hypothesis.
(d) Write down the statement $P(k+1)$, which is the statement we want to prove.
(e) Finish the proof by showing that if $P(k)$ is true, then $P(k+1)$ follows.
2. Use mathematical induction to prove that for any integer $n \geq 1$,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n \cdot(n+1)}=\frac{n}{n+1} .
$$

(a) Define the basis statement $P(1)$ for this proof.
(b) Prove the basis statement $P(1)$.
(c) Write down the statement $P(k)$, the inductive hypothesis.
(d) Write down the statement $P(k+1)$, which is the statement we want to prove.
(e) Finish the proof by showing that if $P(k)$ is true, then $P(k+1)$ follows.
3. Use mathematical induction to prove that $\sum_{i=1}^{n} i \cdot 2^{i}=(n-1) \cdot 2^{n+1}+2$ for any integer $n \geq 1$.
4. Use mathematical induction to prove that for any integer $n \geq 0,2^{2 n}-1$ is divisible by 3 .
5. Use mathematical induction to prove that for any integer $n \geq 0, n\left(n^{2}+5\right)$ is divisible by 6 .
6. Bonus: Find a formula in a, r, m, and n for the sum

$$
a r^{m}+a r^{m+1}+a r^{m+2}+\cdots+a r^{m+n} .
$$

Prove that your formula is correct.

