Discuss the following problems with the people at your table.

- 1. Let $a_1 = 5$ and $a_n = a_{n-1}$ for integers $n \ge 2$.
 - (a) Write the first five terms of the sequence a_1, a_2, a_3, a_4, a_5 .

What kind of sequence is this?

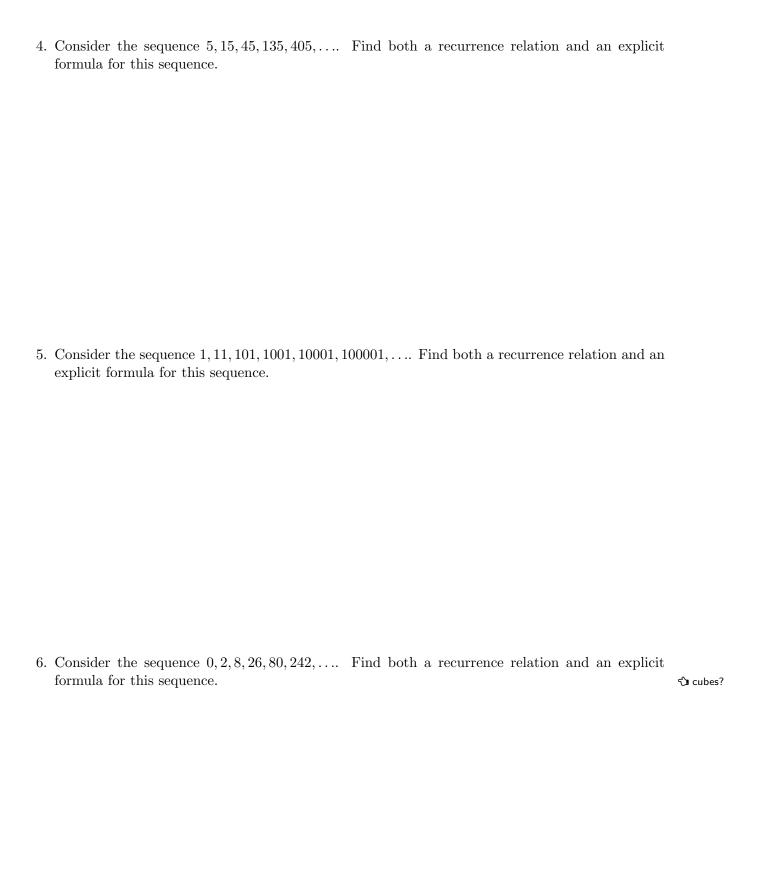
(b) Can you think of a closed form expression (that is, a non-recursive formula) for a_n ?

- 2. Let $b_1 = 4$ and $b_n = \frac{3}{2}b_{n-1}$ for integers $n \ge 2$.
 - (a) Write the first five terms of the sequence b_1, b_2, b_3, b_4, b_5 .

What kind of sequence is this?

(b) Can you think of an explicit (that is, non-recursive) formula for b_n ?

- 3. Let $c_1 = 3$ and $c_n = c_{n-1} + 2n 1$ for integers $n \ge 2$.
 - (a) Write the first five terms of the sequence c_1, c_2, c_3, c_4, c_5 .
 - (b) Can you think of a closed form expression for c_n ?



7. Let a_0, a_1, a_2, \ldots be defined by the formula $a_n = 2^{n+1} - 1$ for all integers $n \ge 0$. Prove that this sequence satisfies the recurrence relation $a_n = a_{n-1} + 2^a$.

 \mathfrak{D} What is the formula for a_{n-1} ?

8. Let b_0, b_1, b_2, \ldots be defined by the formula $b_n = \frac{n}{n+1}$ for all integers $n \ge 1$. Prove that this sequence satisfies the recurrence relation $b_n = b_{n-1} + \frac{1}{n(n+1)}$.

9. Consider the sequences defined below by an explicit formula and a recursive formula:

$$a_n = n^3 - 3n^2 + 3n$$
 for $n \in \{0, 1, 2, 3, \ldots\}$

$$b_0 = 0$$
 and $b_n = b_{n-1} + 1$ for $n \ge 1$

Decide whether these two sequences are the same. Justify your conclusion.

10.	Suppose that $a_0 = 2$ and a_0, a_1, a_2 ,	is a sequence	that satisfies a_k	$= a_{k-1} + 3$ for all inte	egers
	$k \geq 1$. Use mathematical induction	to prove that a_n	=2+3n for all	integers $n > 0$.	

11. A computer algorithm executes twice as many operations when it is run with input of size k as when it is run with input of size k-1. (Assume that $k \ge 1$.) When the algorithm is run with input of size 1, it requires 23 operations to complete its task. How many operations will be required to process an input of size 30?