Math 234

Discuss the following problems with the people at your table.
(a) Write the first five terms of the sequence $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$.

123455 index \leftrightharpoons What kind of

$$
\begin{array}{ll}
a_{2}=a_{1}+3=5+3=8 & a_{5}=14+3=17 \\
a_{3}=a_{2}+3=8+3=11 & \\
a_{4}=11+3=14 &
\end{array}
$$

(b) Can you think of a closed form expression (that is, a non-recursive formula) for a_{n} ?

$$
a_{n}=3 n+2
$$

2. Let $b_{1}=4$ and $\left(b_{n}=\frac{3}{2} b_{n-1}\right.$ for integers $\left.n \geq 2\right) \quad \quad b_{3}=\frac{3}{2} b_{2}=\left(\frac{3}{2}\right) \cdot 4\left(\frac{3}{2}\right)=4\left(\frac{3}{2}\right)^{2}$
(a) Write the first five terms of the sequence $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$. What kind of

$$
b_{1}=4, \quad b_{2}=4\left(\frac{3}{2}\right)=\frac{12}{2}, \quad b_{3}=4\left(\frac{3}{2}\right)^{2}, \quad b_{4}=4\left(\frac{3}{2}\right)^{3}, \quad b_{5}=4\left(\frac{3}{2}\right)^{4}
$$ sequence is this? Geometric SEQUENCE

(b) Can you think of an explicit (that is, non-recursive) formula for b_{n} ?

$$
b_{n}=4\left(\frac{3}{2}\right)^{n-1}
$$

3. Let $c_{1}=3$ and $\left(c_{n}=c_{n-1}+2 n-1\right.$ for integers $n \geq 2$.)
(a) Write the first five terms of the sequence $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$.

$$
\begin{aligned}
c_{1}=3, & c_{2} \\
=3+2(2)-1 & =6, \quad c_{3}=6+2(3)-1=11 \\
c_{4} & =11+2(4)-1=18, \quad c_{5}=18+2(5)-1=27
\end{aligned}
$$

(b) Can you think of a closed form expression for c_{n} ?

$$
c_{n}=n^{2}+2
$$

multiply by 3
4. Consider the sequence $5,15,45,135,405, \ldots$. Find both a recurrence relation and an explicit formula for this sequence.
recursive: $a_{1}=5$ and $a_{n}=3 a_{n-1}$ for $n \geq 2$
closed-formi $a_{n}=5(3)^{n-1}$ for $n \geq 1$
or: $a_{n}=5(3)^{n}$ for $n \geqslant 0$
5. Consider the sequence $1,11,101,1001,10001,100001, \ldots$. Find both a recurrence relation and an explicit formula for this sequence.
explicit formula: $a_{n}=10^{n}+1$ for $n \in\{0,1,2, \ldots\}$
one way to write the recurrence:

$$
\begin{aligned}
& a_{1}=1 \\
& a_{n}=10\left(a_{n-1}-1\right)+1 \quad \text { for } n \geq 1
\end{aligned}
$$

6. Consider the sequence $0,2,8,26,80,242, \ldots$. Find both a recurrence relation and an explicit formula for this sequence.
explicit formula: $a_{n}=3^{n}-1$ for $n \in\{0,1,2,3, \ldots\}$
recurrence:

$$
\begin{aligned}
& a_{0}=0 \\
& a_{n}=3 a_{n-1}+2 \text { for } n \geq 1
\end{aligned}
$$

$$
a_{n}=a_{n-1}+2^{n}
$$

7. Let $a_{0}, a_{1}, a_{2}, \ldots$ be defined by the formula $a_{n}=2^{n+1}-1$ for all integers $n \geq 0$. Prove that this sequence satisfies the recurrence relation $a_{n}=$
write formula for a_{n-1} :

$$
\begin{aligned}
& a_{n-1}=2^{(n-1)+1}-1 \\
& a_{n-1}=2^{n}-1
\end{aligned}
$$

plug into thearecurreace relation:
right side ot

$$
\begin{aligned}
a_{n-1}+2^{n} & =\left(2^{n}-1\right)+2^{n} \\
& =2 \cdot 2^{n}-1 \\
& =2^{n+1}-1=a^{n}
\end{aligned}
$$

Thus, $a_{n-1}+2^{n}=a_{n}$.
8. Let $b_{0}, b_{1}, b_{2}, \ldots$ be defined by the formula $b_{n}=\frac{n}{n+1}$ for all integers $n \geq 1$. Prove that this sequence satisfies the recurrence relation $b_{n}=b_{n-1}+\frac{1}{n(n+1)}$.

First, by definition $b_{n-1}=\frac{n-1}{(n-1)+1}=\frac{n-1}{n}$
Plug into recurrence: $\quad b_{n-1}+\frac{1}{n(n+1)}=\frac{n-1}{n}+\frac{1}{n(n+1)}=\frac{(n-1)(n+1)+1}{n(n+1)}$

$$
=\frac{n^{2}-1+1}{n(n+1)}=\frac{n}{n+1}=b_{n}
$$

Thus, $b_{n}=b_{n-1}+\frac{1}{n(n+1)}$
9. Consider the sequences defined below by an explicit formula and a recursive formula:

$$
\begin{gathered}
a_{n}=n^{3}-3 n^{2}+3 n \text { for } n \in\{0,1,2,3, \ldots\} \\
b_{0}=0 \text { and } b_{n}=b_{n-1}+1 \text { for } n \geq 1
\end{gathered}
$$

Decide whether these two sequences are the same. Justify your conclusion.
These sequences start off the same, but are not equal for $n \geq 3$.

$$
\begin{array}{ll}
a_{0}=0, & a_{1}=1, \\
a_{2}=2, & a_{3}=9, \\
a_{4}=28, \ldots \\
b_{0}=0, & b_{1}=1, \\
b_{2}=2, & b_{3}=3, \\
b_{4}=4, \ldots
\end{array}
$$

10. Suppose that $a_{0}=2$ and $a_{0}, a_{1}, a_{2}, \ldots$ is a sequence that satisfies $a_{k}=a_{k-1}+3$ for all integers $k \geq 1$. Use mathematical induction to prove that $a_{n}=2+3 n$ for all integers $n \geq 0$.

$$
\text { BASE CASE: Let } n=0 \text {. Then } a_{0}=2+3(0)=2 \text {. }
$$

INDUCTION: Let $k \geq 0$ be an integer, and suppose

$$
\text { that } a_{k}=2+3 k
$$

$$
\text { Then } a_{k+1}=a_{k}+3=(2+3 k)+3
$$

$$
\text { So } \quad a_{k+1}=2+3(k+1)
$$

Therefore, $a_{n}=2+3 n$ for all integers $n \geq 0$.
11. A computer algorithm executes twice as many operations when it is run with input of size k as when it is run with input of size $k-1$. (Assume that $k \geq 1$.) When the algorithm is run with input of size 1 , it requires 23 operations to complete its task. How many operations will be required to process an input of size 30 ?

