Math 234

Set Theory

Discuss the following problems with the people at your table.

- 1. Consider the following sets: $A = \{1, 3, 6, 10\}$ and $B = \{2, 4, 6, 8\}$. Determine the following sets by writing their elements in set notation:
 - (a) $A \cup B$
 - (b) $A \cap B$
 - (c) $B \cap A$
 - (d) A B
 - (e) B A
- 2. For each item below, copy the Venn diagram and shade the portion of the Venn diagram corresponding to the indicated set.

(a) $A \cup B \cup C$

(b) A^c

(c) $A \cup B \cup C^c$

- (d) $(A \cap B) C$
- (e) $A^c \cap B^c \cap C^c$
- (f) $(A \cup B \cup C)^c$

- 3. Let $A = \{x \in \mathbf{R} \mid i < x < i + 1 \text{ for some integer } i\}.$
 - (a) Describe in words the set A.

(b) Describe in words the set A^c .

- 4. Consider the set $A = \{n \in \mathbb{Z} \mid n \text{ is divisible by } 10\}$ and $B = \{n \in \mathbb{Z} \mid n \text{ is divisible by } 20\}.$
 - (a) Prove that $B \subseteq A$.

(b) Prove that $A \not\subseteq B$.

- 5. Let $C_i = \{-i, i\}$ for all nonnegative integers i.
 - (a) Are C_1 and C_2 disjoint? Are C_0, C_1, C_2, \ldots mutually disjoint?

(b)
$$\bigcup_{i=0}^{4} C_i = ?$$

(c)
$$\bigcap_{i=0}^{4} C_i = ?$$

(d)
$$\bigcup_{i=0}^{n} C_i = ?$$

(e)
$$\bigcup_{i=0}^{\infty} C_i = ?$$

(f) Do the sets C_0, C_1, C_2, \ldots form a partition of **Z**?

6. Let $D = \{1, 4, 7\}$ and $E = \{1, 2\}$.

- (a) Write out the Cartesian product $D \times E$.
- (b) Write out the power set $\mathscr{P}(D)$.
- (c) How many elements are in $\mathscr{P}(D \times E)$?

7. If A is a set of n elements, how many elements are in $\mathscr{P}(A)$? Explain your reasoning.

8. Given any two sets C and D, describe in words the set $(C \cup D) - (C \cap D)$.

Some examples for specific sets!

9. Bonus: Let $D_i = \left[0, \frac{1}{i}\right] = \left\{x \in \mathbf{R} \mid 0 \le x \le \frac{1}{i}\right\}$ for all positive integers i.

(a) What is
$$\bigcup_{i=1}^{\infty} D_i$$
?

(b) What is
$$\bigcap_{i=1}^{\infty} D_i$$
?