Discuss the following problems with the people at your table.

1. Consider the following sets: $A=\{1,3,6,10\}$ and $B=\{2,4,6,8\}$. Determine the following sets by writing their elements in set notation:
(a) $A \cup B=\{1,2,3,4,6,8,10\}$
(b) $A \cap B=\{6\}$
(c) $B \cap A=\{6\}$
(d) $A-B=\{1,3,10\}$
(e) $B-A=\{2,4,8\}$
2. For each item below, copy the Venn diagram and shade the portion of the Venn diagram caresponding to the indicated set.

(a) $A \cup B \cup C$
(b) A^{c}

(c) $A \cup B \cup C^{c}$
(d) $(A \cap B)-C$
(e) $A^{c} \cap B^{c} \cap C^{c}$

(f) $(A \cup B \cup C)^{c}$
3. Let $A=\{x \in \mathbf{R} \quad i<x<i+1$ for some integer $i\}$.
(a) Describe in words the set A.

The set of real numbers that are not integers.
(b) Describe in words the set A^{c}.

$$
A^{c}=Z
$$

4. Consider the set $A=\{n \in \mathbf{Z} \mid n$ is divisible by 10$\}$ and $B=\{n \in \mathbf{Z} \mid n$ is divisible by 20$\}$.
(a) Prove that $B \subseteq A$.

$$
A=\{-10,20,30, \ldots\}
$$

$$
B=\{20,40, \ldots\}
$$

Suppose $n \in B$.
That means $n=20 k$ for some $k \in \mathbb{Z}$.
Then $n=10(2 k)=10 \mathrm{~m}$, where $m=2 k$ is an integer.
Thus, n is a multiple of 10 , and so $n \in A$.
So every element of B is also in A,
which means $B \subseteq A$.
(b) Prove that $A \nsubseteq B$.

Sine $10 \in A$ bot $10 \notin B, A \not A B$.
5. Let $C_{i}=\{-i, i\}$ for all nonnegative integers i.

$$
\begin{aligned}
& C_{1}=\{-1,1\} \\
& C_{5}=\{-5,5\} \\
& C_{0}=\{0\}
\end{aligned}
$$

(a) Are C_{1} and C_{2} disjoint? Are $C_{0}, C_{1}, C_{2}, \ldots$ mutually disjoint?

$$
C_{1}=\{-1,1\} \quad C_{2}=\{-2,2\} \text { are disjoint }
$$

'Yes.
(b)
since $C_{i} \cap C_{j}=\varnothing$ for any distinct nomegative integers i and j.

$$
C_{0} \cup C_{1} \cup C_{2} \cup C_{3} \cup C_{4}=\{-4,-3,-2,-1,0,1,2,3,4\}
$$

(c) $\bigcap_{i=0}^{4} C_{i}=?=\varnothing$
(d) $\bigcup_{i=0}^{n} C_{i}=?=\{-n,-n+1, \ldots,-3,-2,-1,0,1,2,3, \ldots, n-1, n\}$
(e) $\bigcup_{i=0}^{\infty} C_{i}=?=\{n \in \mathbb{Z}\}=\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
(f) Do the sets $C_{0}, C_{1}, C_{2}, \ldots$ form a partition of \mathbf{Z} ?
6. Let $D=\{1,4,7\}$ and $E=\{1,2\}$.
(a) Write out the Cartesian product $D \times E$.

$$
D \times E=\{(1,1),(1,2),(4,1),(4,2),(7,1),(7,2)\}
$$

(b) Write out the power set $\mathscr{P}(D)$.
set of all subsets

$$
P(D)=\{\varnothing,\{1\},\{4\},\{7\},\{1,4\},\{4,7\},\{1,7\},\{1,4,7\}\}
$$

(c) How many elements are in $\mathscr{P}(D \times E)$?

$$
2^{6}=64
$$

7. If A is a set of n elements, how many elements are in $\mathscr{P}(A)$? Explain your reasoning.

A contains n elements.
Each subset of A either includes or does not include each element of A.
How may subsets?

$$
\underbrace{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdots \cdot 2}_{n}=2^{n}
$$

8. Given any two sets C and D, describe in words the set $(C \cup D)-(C \cap D)$.
f write down some examples for specific sets!
$(C \cup D)-(C \cap D)$ consists of all elements that are in either C or D but not both.
9. Bonus: Let $D_{i}=\left[0, \frac{1}{i}\right]=\left\{x \in \mathbf{R} \left\lvert\, 0 \leq x \leq \frac{1}{i}\right.\right\}$ for all positive integers i.
(a) What is $\bigcup_{i=1}^{\infty} D_{i}$?

$$
\bigcup_{i=1}^{\infty} D_{i}=[0,1]
$$

since $D_{i} \leq D_{1}$ for all $i>1$.
(b) What is $\bigcap_{i=1}^{\infty} D_{i}$?

$$
\bigcap_{i=1}^{\infty} D_{i}=\{0\} \text { since } O \text { is the only } \quad \begin{aligned}
& \text { number in all of the sets } D_{i} .
\end{aligned}
$$

