Math 234

Discuss the following problems with the people at your table.

1. The following is an incomplete proof that for all sets A and B, if $A \subseteq B$, then $A \cup B \subseteq B$. Fill in the blanks to complete the proof.

Proof: Suppose A and B are any sets and $A \subseteq B$.
Let $x \in$ \qquad .

By definition of union, $x \in$ \qquad or $x \in$ \qquad .

In the first case, since $A \subseteq B, x \in$ \qquad .
In the second case it is clear that $x \in B$.
Thus, in either case, $x \in$ \qquad , which is what we needed to show.
2. Prove that for all sets A and $B, A \cap B \subseteq A$.
3. Consider sets A and B :

$$
\begin{aligned}
& A=\{m \in \mathbf{Z} \mid m=5 a \text { for some integer } a\} \\
& B=\{n \in \mathbf{Z} \mid n=10 b-15 \text { for some integer } b\}
\end{aligned}
$$

Prove that $B \subseteq A$.
4. Prove that for all sets A and $B,(B-A)=B \cap A^{c}$.
5. Prove the following theorem by induction on n, the number of sets in the union.

Theorem: Let $A_{1}, A_{2}, A_{3}, \ldots$ be an infinite collection of sets, and let B be a set. If $A_{i} \subseteq B$ for all integers $i \geq 1$, then

$$
\left(\bigcup_{i=1}^{n} A_{i}\right) \subseteq B
$$

for every positive integer n.

First write the statement $P(n)$ that needs to be proved.
6. Consider the statement: For all sets A and B, if $A \subseteq B$, then $A \cap B^{c}=\emptyset$.

Write the negation of the statement. Then prove the statement by contradiction.
7. Prove that for all sets A, B, and C, if $B \cap C \subseteq A$, then $(C-A) \cap(B-A)=\emptyset$.

