Discuss the following problems with the people at your table.

1. The following is an incomplete proof that for all sets A and B, if $A \subseteq B$, then $A \cup B \subseteq B$. Fill in the blanks to complete the proof.
Proof: Suppose A and B are any sets and $A \subseteq B$.
Let $x \in \boldsymbol{A \cup B}$.
By definition of union, $x \in \mathcal{A}$ \qquad or $x \in$ \qquad B
In the first case, since $A \subseteq B, x \in$ \qquad B .
In the second case it is clear that $x \in B$.
Thus, in either case, $x \in$ \qquad , which is what we needed to show.
2. Prove that for all sets A and $B, A \cap B \subseteq A$.

Suppose A and B are any sets and $x \in A \cap B$. By definition of intersection, $x \in A$ and $x \in B$.
In particular, $x \in A$, which is what we wanted to show.
Therefore, $A_{n} B \subseteq A$.
3. Consider sets A and B :

$$
\begin{aligned}
& A=\{m \in \mathbf{Z} \mid m=5 a \text { for some integer } a\} \\
& B=\{n \in \mathbf{Z} \mid n=10 b-15 \text { for some integer } b\}
\end{aligned}
$$

Prove that $B \subseteq A$.
Suppose $x \in B$. Then $x=10 b-15$ for some integer b.
So $x=5(2 b-3)$. Let $a=2 b-3$, which is an integer.
Thus, $x=5 a$, which means that $x \in A$.

Then $x \in A$.
4. Prove that for all sets A and $B,(B-A)=B \cap A^{c}$.

Let A and B be any sets.
(1) Show that $B-A \subseteq B \cap A^{c}$.

Let $x \in B-A$, So $x \in B$ and $x \notin A$.
Since $x \notin A$, then $x \in A^{c}$ by definition of complement.
By definition of intersection if $x \in B$ and $x \in A^{c}$, then $x \in B \cap A^{c}$.
(2) Show that $B \cap A^{c} \leq B-A$.

Let $x \in B \cap A^{c}$. Then $x \in B$ and $x \in A^{c}$.
Since $x \in A^{c}, x \notin A$.
Then $x \in B$ and $x \notin A$, so $x \in B-A$.
5. Prove the following theorem by induction on n, the number of sets in the union. Theorem: Let $A_{1}, A_{2}, A_{3}, \ldots$ be an infinite collection of sets, and let B be a set. If $A_{i} \subseteq B$ for all integers $i \geq 1$, then

$$
\left(\bigcup_{i=1}^{n} A_{i}\right) \subseteq B
$$

for every positive integer n.

First write the statement $P(n)$ that needs to be proved.

Let $P(n)$ be the statement

$$
\left(\bigcup_{i=1}^{n} A_{i}\right) \subseteq B
$$

Basis case: $\quad A_{1} \subseteq B$

$$
P(1):\left(\bigcup_{i=1}^{1} A_{i}\right) \leq B
$$

This is tue by acumption.

$$
-A_{1} \subseteq B
$$

$\left.\begin{array}{c}\text { Induction: Suppose } P(k) \text { is the for same integer k. } \\ \text { That is, }\left(\bigcup_{i=1}^{k} A_{i}\right) \subseteq B .\end{array}\right\}$ induction hypothesis
Also, $A_{k+1} \leq B$ by assumption,
Then, $\left(\bigcup_{i=1}^{k} A_{i}\right) \cup A_{k+1} \subseteq B$, which is the same as $\bigcup_{i=1}^{k_{i}} A_{i} \leq B$.

So $P(k+1)$ is true.
6. Consider the statement: For all sets A and B, if $A \subseteq B$, then $A \cap B^{c}=\emptyset$.

Write the negation of the statement. Then prove the statement by contradiction.
NEGATION: There exist sets A and B with

$$
A \subseteq B \text { and } A \cap B^{c} \neq \varnothing
$$

Proof: Suppose the negation of the statement is true.
Then let sets A and B be such that $A \leq B$ and $A \cap B^{c} \neq \varnothing$.
Since $A \cap B^{C}$ is nonem $P^{\dagger} y$, there exists some $x \in A \cap B^{C}$.
Now $x \in B^{c}$ implies that $x \notin B$.
So $x \in A$ and $x \notin B$, which means that A is not a subset of B. This is a contradiction.
Thus, the negation is false and the original statement is true.
7. Prove that for all sets A, B, and C, if $B \cap C \subseteq A$, then $(C-A) \cap(B-A)=\emptyset$.

Suppose not. Then there exist sets A, B, C with

$$
B \cap C \subseteq A \text { and }(C-A) \cap(B-A) \neq \varnothing \text {. }
$$

Since $(C-A) \cap(B-A)$ is not empty, there exists some $x \in(C-A) \cap(B-A)$.
So $x \in C-A$ and $x \in B-A$.
Since $x \in C-A, \quad x \in C$ and $x \notin A$.
Since $x \in B-A, \quad x \in B$ and $x \notin A$.
This implies $x \in B \cap C$ and $x \notin A$, but then $B \cap C$ cannot be a subset of A. This is a contradiction. Thus the negation must be false and the original statement is true.

