Math 234

1. How many different ways can the letters in the following words be arranged?
(a) BOOKKEEPER 10 letters total

10 le Hers $\underset{E \rightarrow \mathrm{kl}}{\mathrm{E} \rightarrow 3!2!2!} 10!$

$$
=\frac{10!}{3!2!2!}=151,200
$$

(b) UNSUCCESSFULQY K

$$
\frac{14!}{3!3!2!2!}=\left(\begin{array}{l}
4 \\
3 \\
3
\end{array}\right)\binom{11}{3}\binom{8}{2}\binom{6}{2} 5!=605404800
$$

(c) POSSESSIVENESS

$$
\frac{14!}{6!3!}=20180160
$$

2. Compute $\binom{4}{k}$ for each $k \in\{0,1,2,3,4\}$.
$0!=1^{\prime}$

$$
\begin{gathered}
\binom{4}{0}=\frac{4!}{4!0!}=1,\binom{4}{1}=\frac{4!}{3!1!}=4,\binom{4}{2}=\frac{4!}{2!2}=6 \\
\binom{4}{3}=\frac{4!}{1!3!}=4 \quad\binom{4}{4}=\frac{4!}{4!0!}=1
\end{gathered}
$$

3. Draw a copy of Pascal's triangle, at least through the row corresponding to $n=4$. How does this relate to your answers to $\# 2 ? k=0$

$\binom{0}{0}$
$\binom{1}{0}$

$\binom{2}{0}$
(2.)

$$
\left(\frac{2}{2}\right)
$$

(3)
$\binom{3}{1}$

$$
\binom{3}{2}
$$

$$
\longrightarrow\binom{a}{b}=\binom{a-1}{b-1}+\binom{a-1}{b}
$$

4. Use Pascal's formula (several times) to derive a formula for $\binom{n+3}{r}$ in terms of values of $\binom{n}{k}$

$$
\begin{aligned}
\text { with } k \leq r .\binom{n+3}{r} & =\binom{n+2}{-1}+\binom{n+2}{r} \\
& =\binom{n+1}{r-2}+\binom{n+1}{r-1}+\binom{n+1}{r-1}+\binom{n+1}{r} \\
& =\binom{n}{n-3}+\binom{n}{r-2}+\binom{n}{r-2}+\binom{n}{r-1}+\binom{n}{r-2}+\binom{n}{r-1}+\binom{n}{r-1}+\binom{n}{r} \\
& =1\binom{n}{n-3}+3\binom{n}{r-2}+3\binom{n}{r-1}+1\binom{n}{r}
\end{aligned}
$$

\& You may assume n and r are integers with $n \geq r \geq 3$.
5. Expand $(x+y)^{5}$. How are combinations involved here?

$$
(x+y)^{5}=(x+y)(x+y)(x+y)(x+y)(x+y)=\binom{5}{5} x^{5}+\binom{5}{4} x^{4} y+\binom{5}{3} x^{3} y^{2}+\binom{5}{2} x^{2} y^{3}
$$

BINOMIAL THEOREM:

$$
\begin{gathered}
+\binom{5}{1} x y^{4}+\binom{5}{0} y^{5} \\
=x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5}
\end{gathered}
$$

6. (a) Verify each of the following identities:

$$
\begin{gathered}
3^{2}=2^{2}+2 \cdot 2+1 \\
3^{3}=2^{3}+3 \cdot 2^{2}+3 \cdot 2+1 \\
3^{4}=2^{4}+4 \cdot 2^{3}+6 \cdot 2^{2}+4 \cdot 2+1 \\
3^{5}=2^{5}+5 \cdot 2^{4}+10 \cdot 2^{3}+10 \cdot 2^{2}+5 \cdot 2+1
\end{gathered}
$$

(b) The verifications in part (a) seem to suggest the following identity:

$$
3^{n}=2^{n}+\binom{n}{1} 2^{n-1}+\binom{n}{2} 2^{n-2}+\binom{n}{3} 2^{n-3} \cdots+\binom{n}{n-1} 2+1
$$

Express this identity using summation notation, and show how it follows from the Binomial Theorem.

$$
3^{n}=\binom{2+1}{1+1}^{n}=\sum_{k=0}^{n}\binom{n}{k} 2^{n-k} \cdot 1^{k}
$$

7. Prove that $\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} 3^{n-i}=2^{n}$ for all integers $n \geq 0$.

Binomial theorem with $a=3, b=-1$:

$$
2^{n}=(3-1)^{n}=\sum_{i=0}^{n}\binom{n}{i} 3^{n-i}(-1)^{i}
$$

8. Use the binomial theorem to evaluate the sum:

$$
\binom{n}{0}-\frac{1}{2}\binom{n}{1}+\frac{1}{2^{2}}\binom{n}{2}-\frac{1}{2^{3}}\binom{n}{3}+\cdots+(-1)^{n-1} \frac{1}{2^{n-1}}\binom{n}{n-1}
$$

Use the Binomial Theorem with $a=1$ and $b=-\frac{1}{2}$:
Simplify $\left(1-\frac{1}{2}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} \underbrace{(1)^{n-k}}_{1}\left(\frac{-1}{2}\right)^{k} \leftarrow \begin{aligned} & \text { this is almost the sum we want, } \\ & \text { but it has an extra term }\end{aligned}$

$$
\left(\frac{1}{2}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(-\frac{1}{2}\right)^{k}
$$

separate out the last term

$$
\left(\frac{1}{2}\right)^{n}=\left(\sum_{k=0}^{n-1}\binom{n}{k}\left(-\frac{1}{2}\right)^{k}\right)+\underbrace{\binom{n}{n}}_{1}\left(-\frac{1}{2}\right)^{n}
$$

This is the sum that we want!

$$
\left(\frac{1}{2}\right)^{n}-\left(\frac{-1}{2}\right)^{n}=\sum_{k=0}^{n-1}\binom{n}{k}\left(\frac{-1}{2}\right)^{k}
$$

Therefore, the given sum is:

$$
\sum_{k=0}^{n-1}\binom{n}{k}\left(-\frac{1}{2}\right)^{k}=\left(\frac{1}{2}\right)-\left(-\frac{1}{2}\right)^{n}= \begin{cases}0 & \text { if } n \text { is even } \\ \frac{1}{2^{n-1}} & \text { if } n \text { is odd. }\end{cases}
$$

9. BONUS:
(a) Choose several rows of Pascal's triangle. Add up the numbers in each row. What do you notice?

The sum is always a power of 2!
(b) Based on your observations in part (a), what do you think $\sum_{k=0}^{n}\binom{n}{k}$ equals?

$$
\text { It appears that } \sum_{k=0}^{n}\binom{n}{k}=2^{n} \text {. }
$$

(c) How does your answer to part (c) relate to the power set of a set of n elements?

Let S be a set of n elements.
Then $P(S)$ has 2^{n} elements, which are subsets of S.
There are: $\binom{n}{0}=1$ subsets with 0 elements,
$\binom{n}{1}=n$ subsets with 1 element,
ทั
and more generally (\hat{k}) subsets of k elements for any integer $0 \leqslant k \leq n$. Thus the total number of subsets is $\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}$, which must be 2^{n}.

