1. A student defines a function $g: \widehat{\mathbf{Q}} \rightarrow \mathbf{Z}$ by the rule

$$
g\left(\frac{m}{n}\right)=m-n
$$

for all rational numbers $\frac{m}{n}$. Is this function well defined? Why or why not?

$$
g\left(\frac{1}{2}\right)=1-2=-1 \quad \text { but } \quad g\left(\frac{2}{4}\right)=2-4=-2 \text { and } \frac{1}{2}=\frac{2}{4}
$$

2. Let $X=\{a, b, c, d, e\}$ and $Y=\{1,2,3,4\}$. Define the function $f: X \rightarrow Y$ by the following arrow diagram.

(a) What are the values of $f(a), f(b)$ and $f(c)$?

$$
f(a)=3, \quad f(b)=1, \quad f(c)=3
$$

(b) What is the domain of f ?

(c) What is the codomain of f ?

$$
Y=\{1,2,3,4\}
$$

(d) What is the range of f ?

$$
\{1,2,3\}
$$

(e) Is a an inverse image of 3 ?

$$
f(a)=3 \text {, so yes. }
$$

(f) What is the inverse image of 3 ?

$$
f^{-1}(3)=\{a, c, e\}
$$

(g) Is f well defined?
Yes
(h) Is f one-to-one?

No, since $f^{-1}(c)$ has more then one element.
(i) Is f onto?

No, since there is no $x \in X$ such that $f(x)=4 \in Y$.

Power set of the integers - all possible sets of integers
3. Let $F: \mathscr{P}(\mathbf{Z}) \rightarrow \mathbf{R}$ be the function defined by

$$
F(A)=\max (A)-\min (A)
$$

For example, $F(\{-2,5,2\})=5-(-2)=7$.
(a) What is the value of $F(\{1,3,19,-3\}) ?=19-(-3)=22$
(b) What is the domain of F ?

$$
\gamma(\mathbb{z})
$$

(c) What is the codomain of F ?

$$
\mathbb{R}
$$

(d) What is the range of F ?

$$
\mathbb{Z}^{\geq 0}=\{n \in \mathbb{Z} \mid n \geq 0\}
$$

(e) Is $\{5,-7,2,15\}$ an inverse image of 20 ? ...of 22 ?

$$
\text { no yes, since } 15-(-7)=22
$$

(f) What is the inverse image of 6 ?

$$
\{x p(z) \mid f(x)=b\}=\{x \in p(z) \mid \operatorname{mon}(x)-m(x)=6\}
$$

(g) Is F well defined?

No, since $\varnothing \in \mathbb{P}(\mathbb{Z})$ but $F(\varnothing)$ is not defined.
(h) Is F one-to-one?

No
(i) Is F onto?

No
4. Draw your own arrow diagram to define a function that is one-to-one but not onto. Then draw your own arrow diagram to define a function that is onto but not one-to-one.
5. Define $f: \mathbf{R} \rightarrow \mathbf{R}$ by the rule $f(x)=5 x+3$.
(a) Is f one-to-one? Prove that your answer is correct.

IDEA: Suppose that x, y in the domain are such that $f(x)=f(y)$.
Show the nt in fact $x=y$.
Proof: Suppose $x, y \in \mathbb{R}$ are such that $f(x)=f(y)$.
That means $5 x+3=5 y+3$. Then $5 x=5 y$ and so $x=y$.
Thus, f is one-to-one.
(b) Is f onto? Prove that your answer is correct.

IDEA: Suppose that y is in the codomain.
show that there is some x in the domain such that $y=f(x)$.
Proof: Suppose $y \in \mathbb{R}$.

6. Define $g: \mathbf{Z} \rightarrow \mathbf{Z}$ by the rule $g(n)=3 n+1(\bmod 7)$.
(a) Is g one-to-one? Prove that your answer is correct.

$$
\equiv 6
$$

30 $g(4)=6$
No. Consider $n=0$ and $m=7$:

$$
\begin{aligned}
& g(0)=1 \\
& g(7)=3(7)+1 \equiv 1(\bmod 7)
\end{aligned}
$$

So $g(0)=g(7)$ and g is not one-x-ale.
(b) Is g onto? Prove that your answer is correct.

No. There is no $n \in \mathbb{Z}$ such that $g(n)=8$.

The floor function assigns to each $x \in \mathbf{R}$ the largest integer that is less than or equal to x. The value of the floor function at x is denoted $\lfloor x\rfloor$.

The ceiling function assigns to each $x \in \mathbf{R}$ the smallest integer that is greater than or equal to x. The value of the ceiling function at x is denoted $\lceil x\rceil$.
7. Compute the following:

$$
\left\lfloor\frac{1}{2}\right\rfloor=0 \quad\left\lceil\frac{5}{2}\right\rceil=3 \quad\lfloor 3.2\rfloor=3 \quad\lceil 7\rceil=7 \quad\lfloor-3\rfloor=-3
$$

8. Prove or disprove the following statements about the floor and ceiling functions.
(a) $\lfloor\lceil x\rceil\rfloor=\lceil x\rceil$ for all real numbers x. True!

Let $x \in \mathbb{R}$. Then let $n=\lceil x\rceil$, which is an integer, so $\lfloor[x\rceil\rfloor=n$. Thus $\lfloor\lceil x\rceil\rfloor=n=\lceil x\rceil$.
(b) $\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor$ for all real numbers x and y. False!

Counter example: $\quad x=y=\frac{1}{2}$

$$
\begin{aligned}
& \lfloor x+y\rfloor=\left\lfloor\frac{1}{2}+\frac{1}{2}\right\rfloor=1 \\
& \lfloor x\rfloor+\lfloor y\rfloor=\left\lfloor\frac{1}{2}\right\rfloor+\left\lfloor\frac{1}{2}\right\rfloor=0+0=0
\end{aligned}
$$

(c) $\left\lceil\frac{\lceil x / 2\rceil}{2}\right\rceil=\left\lceil\frac{x}{4}\right\rceil$ for all real numbers x.

True! For the proof, consider cases modulo. 4.
(d) $\lfloor\sqrt{\lceil x\rceil}\rfloor=\lfloor\sqrt{x}\rfloor$ for all positive real numbers x.

False: Counterexample: let $x=\frac{1}{2}$, then

$$
\begin{aligned}
& \left\lfloor\sqrt{\left\lceil\frac{1}{2}\right\rceil}\right\rfloor=\lfloor\sqrt{1}\rfloor=\lfloor 1\rfloor=1 \\
& \left\lfloor\sqrt{\frac{1}{2}}\right\rfloor=0 \text { since } 0<\sqrt{\frac{1}{2}}<1
\end{aligned}
$$

