Math 234

Functions: Inverse and Composition

- 1. Suppose Y and Z are sets and $g: Y \to Z$ is a one-to-one and onto function. What can be inferred in the following situation?
 - (a) s_1 and s_2 are elements of Y and $g(s_1) = g(s_2)$.
 - (b) s/2 and t/2 are elements of Y and g(s/2) = g(t/2).
 - (c) For some function f whose domain includes x_1 and x_2 , $f(x_1)$ and $f(x_2)$ are elements of Y and $g(f(x_1)) = g(f(x_2))$.
- 2. Let $X = \{a, b, c\}$, $Y = \{d, e, f\}$ and $Z = \{g, h, i\}$. Define $g : X \to Y$ and $f : Y \to Z$ by the diagram below.

- (a) Draw an arrow diagram for the composition $f \circ g$.
- (b) Draw an arrow diagram for the composition $(f \circ g)^{-1}$.
- (c) Draw arrow diagrams for g^{-1} and f^{-1} .
- (d) Draw an arrow diagram for $g^{-1} \circ f^{-1}$.
- (e) How are $(f \circ g)^{-1}$ and $g^{-1} \circ f^{-1}$ related?

- 3. Suppose $f: X \to Y$ is one-to-one and $g: Y \to Z$ is onto. Consider the composition $g \circ f: X \to Z$.
 - (a) Is it *possible* that $g \circ f$ is one-to-one? If so, find examples of functions f and g so that $g \circ f$ is one-to-one. If not, explain why not.

(b) Is it *certain* that $g \circ f$ is one-to-one? If not, find examples of functions f and g so that $g \circ f$ is not one-to-one. If yes, prove that $g \circ f$ is one-to-one.

(c) Is it *possible* that $g \circ f$ is onto? If so, find examples of functions f and g so that $g \circ f$ is onto. If not, explain why not.

(d) Is it *certain* that $g \circ f$ is onto? If not, find examples of functions f and g so that $g \circ f$ is not onto. If yes, prove that $g \circ f$ is onto.

- 4. Let $f(x) = \frac{x+4}{3x-2}$.
 - (a) The function definition for f is incomplete because the domain of f is not specified. What is the largest set of real numbers that could be the domain of f?

(b) Find the inverse function f^{-1} . What is the domain of f^{-1} ?

(c) Check your answer from part (b) by computing $f^{-1}(f(x)) = x$ for all x in the domain of f.

(d) Is f a bijection between two sets of real numbers? If so, which sets? If not, why not?

5. Given any set X and any functions $f: X \to X$, $g: X \to X$, and $h: X \to X$. If h is one-to-one and $h \circ f = h \circ g$, is it true that f = g? Either give a proof or a counterexample.

Problem 21 in Section 7.3

6. Given any set X and any functions $f: X \to X$, $g: X \to X$, and $h: X \to X$. If h is one-to-one and $f \circ h = g \circ h$, is it true that f = g? Either give a proof or a counterexample.

Deroblem 22 in Section 7.3