Math 234

Functions: Inverse and Composition

1. Suppose Y and Z are sets and $g: Y \rightarrow Z$ is a one-to-one and onto function. What can be inferred in the following situation?
(a) s_{1} and s_{2} are elements of Y and $g\left(s_{1}\right)=g\left(s_{2}\right)$.
(b) $s / 2$ and $t / 2$ are elements of Y and $g(s / 2)=g(t / 2)$.
(c) For some function f whose domain includes x_{1} and $x_{2}, f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ are elements of Y and $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$.
2. Let $X=\{a, b, c\}, Y=\{d, e, f\}$ and $Z=\{g, h, i\}$. Define $g: X \rightarrow Y$ and $f: Y \rightarrow Z$ by the diagram below.

(a) Draw an arrow diagram for the composition $f \circ g$.
(b) Draw an arrow diagram for the composition $(f \circ g)^{-1}$.
(c) Draw arrow diagrams for g^{-1} and f^{-1}.
(d) Draw an arrow diagram for $g^{-1} \circ f^{-1}$.
(e) How are $(f \circ g)^{-1}$ and $g^{-1} \circ f^{-1}$ related?
3. Suppose $f: X \rightarrow Y$ is one-to-one and $g: Y \rightarrow Z$ is onto. Consider the composition $g \circ f: X \rightarrow Z$.
(a) Is it possible that $g \circ f$ is one-to-one? If so, find examples of functions f and g so that $g \circ f$ is one-to-one. If not, explain why not.
(b) Is it certain that $g \circ f$ is one-to-one? If not, find examples of functions f and g so that $g \circ f$ is not one-to-one. If yes, prove that $g \circ f$ is one-to-one.
(c) Is it possible that $g \circ f$ is onto? If so, find examples of functions f and g so that $g \circ f$ is onto. If not, explain why not.
(d) Is it certain that $g \circ f$ is onto? If not, find examples of functions f and g so that $g \circ f$ is not onto. If yes, prove that $g \circ f$ is onto.
4. Let $f(x)=\frac{x+4}{3 x-2}$.
(a) The function definition for f is incomplete because the domain of f is not specified. What is the largest set of real numbers that could be the domain of f ?
(b) Find the inverse function f^{-1}. What is the domain of f^{-1} ?
(c) Check your answer from part (b) by computing $f^{-1}(f(x))=x$ for all x in the domain of f.
(d) Is f a bijection between two sets of real numbers? If so, which sets? If not, why not?
5. Given any set X and any functions $f: X \rightarrow X, g: X \rightarrow X$, and $h: X \rightarrow X$. If h is one-to-one and $h \circ f=h \circ g$, is it true that $f=g$? Either give a proof or a counterexample.
6. Given any set X and any functions $f: X \rightarrow X, g: X \rightarrow X$, and $h: X \rightarrow X$. If h is one-to-one and $f \circ h=g \circ h$, is it true that $f=g$? Either give a proof or a counterexample.
