1. Suppose Y and Z are sets and $g: Y \rightarrow Z$ is a one-to-one and onto function. What can be inferred in the following situation?
(a) s_{1} and s_{2} are elements of Y and $g\left(s_{1}\right)=g\left(s_{2}\right)$.

$$
\begin{aligned}
& s_{1} \text { and } s_{2} \text { are the same } \\
& s_{1}=s_{2} \text { since } g \text { is one-to-one }
\end{aligned}
$$

(b) $s / 2$ and $t / 2$ are elements of Y and $g(s / 2)=g(t / 2)$.

$$
\begin{gathered}
\frac{s}{2}=\frac{t}{2} \text { since } \quad \text { is one-t-one, } \\
\text { so } s=t
\end{gathered}
$$

(c) For some function f whose domain includes x_{1} and $x_{2}, f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ are elements of Y and $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$.

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \text { since } g \text { is ore-to-one }
$$

$$
\text { we don't know if } x_{1} \text { and } x_{2} \text { are the same }
$$

2. Let $X=\{a, b, c\}, Y=\{d, e, f\}$ and $Z=\{g, h, i\}$. Define $g: X \rightarrow Y$ and $f: Y \rightarrow Z$ by the diagram below.

FUNCTION COMPOSTITON

Z
(a) Draw an arrow diagram for the composition $f \circ g$.

(b) Draw an arrow diagram for the composition $(f \circ g)^{-1}$.
(c) Draw arrow diagrams for g^{-1} and f^{-1}.

(d) Draw an arrow diagram for $g^{-1} \circ f^{-1}$.
(e) How are $(f \circ g)^{-1}$ and $g^{-1} \circ f^{-1}$ related?

$$
(f \circ g)^{-1}=g^{-1} 0 f^{-1}
$$

3. Suppose $f: X \rightarrow Y$ is one-to-one and $g: Y \rightarrow Z$ is onto. Consider the composition $g \circ f: X \rightarrow Z$.
(a) Is it possible that $g \circ f$ is one-to-one? If so, find examples of functions f and g so that $g \circ f$ is one-to-one. If not, explain why not.
Yes.
example:

(b) Is it certain that $g \circ f$ is one-to-one? If not, find examples of functions f and g so that $g \circ f$ is not one-to-one. If yes, prove that $g \circ f$ is one-to-one.

(c) Is it possible that $g \circ f$ is onto? If so, find examples of functions f and g so that $g \circ f$ is onto. If not, explain why not.

Yes

(d) Is it certain that $g \circ f$ is onto? If not, find examples of functions f and g so that $g \circ f$ is not onto. If yes, prove that $g \circ f$ is onto.

No.

counter example:

4. Let $f(x)=\frac{x+4}{3 x-2}$.
(a) The function definition for f is incomplete because the domain of f is not specified. What is the largest set of real numbers that could be the domain of f ?
we simply have to avoid $x=\frac{2}{3}$

$$
\text { Let } T=\mathbb{R}-\left\{\frac{2}{3}\right\} .
$$

Then define $f: T \rightarrow \mathbb{R}$ by $f(x)=\frac{x+4}{3 x-2}$.
(b) Find the inverse function f^{-1}. What is the domain of f^{-1} ?

$$
y=f(x)
$$

Let $y=\frac{x+4}{3 x-2}$ and solve for x.

$$
x=f^{-1}(y)
$$

$$
\begin{aligned}
& y(3 x-2)=x+4 \\
& 3 x y-2 y=x+4 \\
& 3 x y-x=4+2 y \\
& x(3 y-1)=4+2 y
\end{aligned}
$$

Thus $f^{-1}(y)=\frac{4+2 y}{3 y-1}$, with domain $\mathbb{R}-\left\{\frac{1}{3}\right\}$
(c) Check your answer from part (b) by computing $f^{-1}(f(x))=x$ for all x in the domain of f.

$$
\begin{aligned}
& \qquad \begin{array}{l}
f^{-1}(f(x))=f^{-1}\left(\frac{x+4}{3 x-2}\right)=\frac{\left(4+2 \frac{x+4}{3 x-2}\right)(3 x-2)}{\left(3 \frac{x+4}{3 x-2}-1\right)(3 x-2)}=\frac{4(3 x-2)+2(x+4)}{3(x+4)-1(3 x-2)} \\
f^{-1}(f(x))=x \\
\text { for all } x \in \mathbb{R}, x \neq \frac{2}{3}
\end{array} \quad=\frac{12 x-8+2 x+8}{3 x+12-3 x+2}=\frac{14 x}{14}=x
\end{aligned}
$$

(d) Is f a bijection between two sets of real numbers? If so, which sets? If not, why not?

$$
T=\mathbb{R}-\left\{\frac{2}{2}\right\} \text { au kt } \mathrm{S}: \mathbb{R}-\left\{\frac{\{1}{3}\right\}
$$

f is a bijection betioen T and S.
5. Given any set X and any functions $f: X \rightarrow X, g: X \rightarrow X$, and $h: X \rightarrow X$. If h is one-to-one and $h \circ f=h \circ g$, is it true that $f=g$? Either give a proof or a counterexample.

Yes.
PROOF: Let x be any set and f, g, h functions from X to X such that h is one-to-one and $h \circ f=h \circ \mathrm{~g}$.
Let $x \in X$.
Since $h \circ f=h \circ g$, we have $(h \circ f)(x)=(h \circ g)(x)$, which means that $h(f(x))=h(g(x))$.
Since h is one-to-one, this implies that $f(x)=g(x)$.
Therefore, $f=g$.
6. Given any set X and any functions $f: X \rightarrow X, g: X \rightarrow X$, and $h: X \rightarrow X$. If h is one-to-one and $f \circ h=g \circ h$, is it true that $f=g$? Either give a proof or a counterexample.
Yes.

Proof: Let X be any set and f, g, h functions from X to X such that h is one-to-ore and $f \circ h=g \circ h$.
Since $h: X \rightarrow X$ is one-to-one with the some domain and range, h is also onto.

Let $y \in X$. Since h is onto, there exists $x \in X$ such that $h(x)=y$.
Since $f \circ h=g \circ h$, we have $(f \circ h)(x)=(g \circ h)(x)$, meaning that $f(h(x))=g(h(x))$, which means $f(y)=g(y)$. Therefore, $f=g$.

