Math 234

1. Fill in the blank:

Sets A and B have the same cardinality if and only if \qquad there exists a function $f: A \rightarrow B$ that is one-to-one and onto.
2. Which of the following sets have the same cardinality?
a bijection
A and C have the sums cardinality

B and $s i$ define $f: B \rightarrow S$ via $f(x)=\frac{x}{2}$ is one-troose and onto
M and \mathbb{Z}^{+}: define $g: M \rightarrow \mathbb{Z}^{+}$via $g(x)=\frac{x}{2}$
3. Which of the sets in $\# 2$ are countable?

All of them
\rightarrow finite or count lay infinite,
same cardinality as \mathbb{Z}^{+}
4. Prove that the set of all square numbers is countable.

$$
\begin{aligned}
& S=\{0,1,4,9,16,25,36, \ldots\} \\
& \mathbb{Z}^{+}=\{1,2,3,4,5,6,7, \ldots\}
\end{aligned}
$$

$$
\text { define } f: \mathbb{Z}^{+} \rightarrow S \text { by } f(n)=(n-1)^{2}
$$

5. Prove that \mathbf{Z} is countable.

$$
\mathbb{Z}=\left\{\ldots,-\frac{4}{1},-3,-2,-1,0,1,2,3,4, \ldots\right\}
$$

Count:

6. Let \mathbf{Q}^{+}be the set of all positive rational numbers. Is \mathbf{Q}^{+}countable? Why or why not? costs:

Yes! We can put all positive rationals into a list by going through the grid at left, one diagonal after another.
7. Is $\mathbf{Z}^{+} \times \mathbf{Z}^{+}$countable? Why or why not? Yes!

Similar to the previous problem, put all pairs (n, n) into a grid, as at left. Then start in the upper left corner and order all pairs, one diagonal after another.
8. Let $S=\{x \in \mathbf{R} \mid 0<x<1\}$. Is S countable? Why or why not?

No. Proof by contradiction:
Suppose S is countable. Then the elements of S can be put into a list:

$$
\left.\begin{array}{llllll}
\text { 1: } & 0 . a_{11} & a_{12} & a_{13} & a_{14} & \ldots \\
2: & 0 . a_{21} & a_{22} & a_{23} & a_{24} & \ldots \\
3: & 0 . a_{31} & a_{32} & a_{33} & a_{34} & \ldots \\
4: & 0 . a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] .
$$

$\checkmark^{\text {decimal digits }}$
Construct a decimal number $d=0 . d_{1} d_{2} d_{3} d_{4} \ldots$
where $d_{n}=\left\{\begin{array}{lll}4 & \text { if } & a_{n n}=2 \\ 2 & \text { if } & a_{4 n} \neq 2\end{array}\right.$
Now d is not in the list since it differs from the $n^{\text {th }}$ number In digit n, for all n. Cantradizion.
9. Let $M=\{x \in \mathbf{R} \mid 0<x<0.1\}$. Show that M has the same cardinality as S from the previous problem.

Define $f: S \rightarrow M$ by $f(x)=\frac{x}{10}$.
Since f is one-to-one and onto, this shows that M has the same cardinality as S.
10. Suppose A and B are countable sets. Is $A \cup B$ countable?

Yes! Since A is countable, denote the elements of A as $a_{1}, a_{2}, a_{3}, \ldots$. Similarly, denote the elements of B as $b_{1}, b_{2}, b_{3}, \ldots$.
Define $f: \mathbb{Z}^{+} \rightarrow A \cup B$ by $f(n)=\left\{\begin{array}{ll}a_{n+1}^{2} & \text { if } n \text { is odd } \\ b_{\frac{n}{2}} & \text { if } n \text { is even }\end{array}\right.$.
So $\{f(1), f(2), f(3), f(4), \ldots\}=\left\{a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \ldots\right\}$.
Since f is one-to-one and onto, $A \cup B$ is constable.
11. Is the set of irrational numbers countable? Why or why not?

No. Proof by counterexample:
Let \mathbb{Q}^{C} denote the irrationals. Suppose \mathbb{Q}^{C} is countable.
Since \mathbb{Q} is countable, by the previous problem $\mathbb{R}=\mathbb{Q} \cup \mathbb{Q}^{C}$ is countable.
But this is a contradiction since \mathbb{R} is uncountable.
Therefore \mathbb{Q}^{c} is not countable.

