## Math 234

Relations

- 1. Let  $A = \{n \in \mathbb{Z} \mid -20 \le n \le 20\}$  and define relation R by  $R = \{(n_1, n_2) \mid n_1^2 = n_2\}.$ (a) Is it true that 3 R 9?
  - (b) Is it true that -4 R 16?
  - (c) Is it true that 5 R 10?
  - (d) Write out every element in the set R.
  - (e) Write out every element in the set  $R^{-1}$ , the inverse relation of R.
  - (f) Is the relation R reflexive? Is it symmetric? Is it transitive?

- 2. For the same set A as above, let  $S = \{(n_1, n_2) \mid |n_1| \le |n_2|\}.$ 
  - (a) Is it true that -3 S 9?
  - (b) Is it true that 9 S 3?
  - (c) Is it true that 3 S 9?
  - (d) Is it true that 10  $S^{-1} 7?$
  - (e) Is the relation S reflexive? Is it symmetric? Is it transitive?

- 3. Let  $A = \{1, 2, 3, 4\}$ , and define relation  $R = \{(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3), (4, 2), (4, 4)\}$ .
  - (a) Complete the arrow diagram to depict relation R.



(b) Is R reflexive? Is it symmetric? Is it transitive?

(c) Draw an arrow diagram to depict relation  $R^{-1}$ .

4. Define a relation Q on  $\mathbf{R}$  as follows: For all real numbers x and y,  $x Q y \Leftrightarrow x - y$  is rational. Is Q reflexive? Is it symmetric? Is it transitive?

- 5. Let X be a finite set. Define the following relations on  $\mathscr{P}(X)$ , the power set of X. Is each relation reflexive? Symmetric? Transitive?
  - (a) For all  $A, B \in \mathscr{P}(X)$ ,  $A \in B \Leftrightarrow$  the number of elements in A equals the number of elements in B.

(b) For all  $A, B \in \mathscr{P}(X)$ ,  $A \sqcup B \Leftrightarrow$  the number of elements in A is less than the number of elements in B.

(c) For all  $A, B \in \mathscr{P}(X)$ ,  $A \mathbb{N} B \Leftrightarrow$  the number of elements in A is not equal to the number of elements in B.

- 6. Suppose R and S are reflexive relations on the same set A.
  - (a) Is  $R \cup S$  a reflexive relation on A? Prove your answer is correct.

(b) Is  $R \cap S$  a reflexive relation on A? Prove your answer is correct.

(c) Is R - S a reflexive relation on A? Prove your answer is correct.