Math 234

Relations
Day 22

1. Let $A=\{n \in \mathbf{Z} \mid-20 \leq n \leq 20\}$ and define relation R by $R=\left\{\left(n_{1}, n_{2}\right) \mid n_{1}^{2}=n_{2}\right\}$.
(a) Is it true that $3 R 9$?
(b) Is it true that $-4 R 16$?
(c) Is it true that $5 R 10$?
(d) Write out every element in the set R.
(e) Write out every element in the set R^{-1}, the inverse relation of R.
(f) Is the relation R reflexive? Is it symmetric? Is it transitive?
2. For the same set A as above, let $S=\left\{\left(n_{1}, n_{2}\right)| | n_{1}\left|\leq\left|n_{2}\right|\right\}\right.$.
(a) Is it true that $-3 S 9$?
(b) Is it true that $9 S 3$?
(c) Is it true that $3 S-9$?
(d) Is it true that $10 S^{-1}-7$?
(e) Is the relation S reflexive? Is it symmetric? Is it transitive?
3. Let $A=\{1,2,3,4\}$, and define relation $R=\{(1,1),(1,3),(2,2),(2,4),(3,1),(3,3),(4,2),(4,4)\}$.
(a) Complete the arrow diagram to depict relation R.

(b) Is R reflexive? Is it symmetric? Is it transitive?
(c) Draw an arrow diagram to depict relation R^{-1}.
4. Define a relation Q on \mathbf{R} as follows: For all real numbers x and $y, x Q y \Leftrightarrow x-y$ is rational. Is Q reflexive? Is it symmetric? Is it transitive?
5. Let X be a finite set. Define the following relations on $\mathscr{P}(X)$, the power set of X. Is each relation reflexive? Symmetric? Transitive?
(a) For all $A, B \in \mathscr{P}(X), A \mathbf{E} B \Leftrightarrow$ the number of elements in A equals the number of elements in B.
(b) For all $A, B \in \mathscr{P}(X), A \mathbf{L} B \Leftrightarrow$ the number of elements in A is less than the number of elements in B.
(c) For all $A, B \in \mathscr{P}(X), A \mathbf{N} B \Leftrightarrow$ the number of elements in A is not equal to the number of elements in B.
6. Suppose R and S are reflexive relations on the same set A.
(a) Is $R \cup S$ a reflexive relation on A ? Prove your answer is correct.
(b) Is $R \cap S$ a reflexive relation on A ? Prove your answer is correct.
(c) Is $R-S$ a reflexive relation on A ? Prove your answer is correct.
