Big-O notation
" $f(n)$ is $O(g(n)$ " means

- $f(n)$ is asymptotically similar to or smaller than $g(n)$
- $f(n)$ does not grow faster than a constant multiple of $g(n)$
- There exist constants c and k such that $|f(n)| \leqslant c \cdot|g(n)|$ whenever $n>k$.

Examples:

- $f(x)=x+1$ is $O(x)$
- $f(x)=1000 x$ is $O(x)$
- $f(x)=5 x^{3}+17 x-3$ is $O\left(x^{3}\right) \ldots$ and $O\left(x^{4}\right)$
- $f(x)=2^{x}$ is not $O\left(x^{2}\right)$
- $f(x)=2^{x}+x^{17}$ is $O\left(2^{x}\right)$

A relation R on a set A is a subset of $A \times A$.
Math 234
Relations

$$
R \leq A \times A \text {. We write } x R y \text { if }(x, y) \in R \text {. }
$$

1. Let $A=\{n \in \mathbf{Z} \mid-20 \leq n \leq 20\}$ and define relation R_{\wedge} by $R=\left\{\left(n_{1}, n_{2}\right) \mid n_{1}^{2}=n_{2}\right\}$.
(a) Is it true that $3 R 9$?

$$
\text { Yes, since } 3^{2}=9, \quad(3,9) \in R \text {. }
$$

(b) Is it true that $-4 R 16$?

$$
\text { Yes, since }(-4)^{2}=16, \quad(-4,16) \in R
$$

(c) Is it true that $5 R 10$?

$$
\text { No, sine } 5^{2} \neq 10, \quad(5,10) \in R
$$

(d) Write out every element in the set R.

$$
R=\{(0,0),(1,1),(-1,1),(2,4),(-2,4),(3,9),(-3,9),(4,16),(-4,16)\}
$$

(e) Write out every element in the set R^{-1}, the inverse relation of R.

$$
R^{-1}=\{(0,0),(1,1),(1,-1),(4,2),(4,-2),(9,3),(9,-3),(1,4),(16,-4)\}
$$

(f) Is the relation R reflexive? Is it symmetric? Is it transitive?

Not reflexive since $(2,2) \notin R$.
Not symmetric since $(2,4) \in R$ but $(4,2) \notin R$.
Not transitive since $(2,4) \in R,(4,16) \in R$, but $(2,16) \in R$.
2. For the same set A as above, let $S=\left\{\left(n_{1}, n_{2}\right)| | n_{1}\left|\leq\left|n_{2}\right|\right\}\right.$.
(a) Is it true that $-3 S 9$?

$$
\text { Yes: } \quad|-3| \leq|9|
$$

(b) Is it true that $9 S 3$?

$$
\text { No: }|9| \nRightarrow|3|
$$

(c) Is it true that $3 S-9$?

$$
\text { Yes: }|3| \leq|-9|
$$

(d) Is it true that $10 S^{-1}-7$?
— True iff $-7 \leq 10$, which is true since $|7| \leqslant|20|$
(e) Is the relation S reflexive? Is it symmetric? Is it transitive?

Reflexive: since $(x, x) \in S \quad \forall x \in A \quad|x| \leq|x|$
Symmetrici No, since $(1,2) \in S$ but $(2,1) \notin S$
Transitive: Yes, if $|x| \leq|y|$ and $|y| \leq|z|$,
3. Let $A=\{1,2,3,4\}$, and define relation $R=\{(1,1),(1,3),(2,2),(2,4),(3,1),(3,3),(4,2),(4,4)\}$.
(a) Complete the arrow diagram to depict relation R.

(b) Is R reflexive? Is it symmetric? Is it transitive?

Yes reflexive: $(1,1),(2,2),(3,3),(4,4) \in R$
Yes symmetric: $i f(x, y) \in R$, then $(y, x) \in R$
Yes transitive: if $\left(x_{1}\right) \in R$ and $(y, z) \in R$, then $(x, z) \in R$
(c) Draw an arrow diagram to depict relation R^{-1}.
same as for R
4. Define a relation Q on \mathbf{R} as follows: For all real numbers x and $y, x Q y \Leftrightarrow x-y$ is rational. Is Q reflexive? Is it symmetric? Is it transitive?

$$
(x, y) \in Q \text { if and only if }
$$ $x-y$ is rational

Yes reflexive:
$\forall x \in \mathbb{R}, \quad x-x=0$ is rational, so $x Q x$.
Yes symmetric:
$\forall x, y \in \mathbb{R}$, if $x-y$ is rational, then $y-x$ is also rational

$$
x-y=\frac{p}{2} \quad y-x=\frac{-p}{2}
$$

Thus if $(x, y) \in Q$, so is (y, x).
Yes transitive: if $x-y$ is rational and $y-z$ is rational, then $x-z=(x-y)+(y-z)$ is also rational.

We did not do this page in class.
5. Let X be a finite set. Define the following relations on $\mathscr{P}(X)$, the power set of X. Is each relation reflexive? Symmetric? Transitive?
(a) For all $A, B \in \mathscr{P}(X), A \mathbf{E} B \Leftrightarrow$ the number of elements in A equals the number of elements in B.

Reflexive: Yes, since $N(A)=N(A)$ for any $A \in P(X)$.
Symmetric: Yes. If $N(A)=N(B)$, then $N(B)=N(A)$.
Transitive: Yes. If $N(A)=N(B)$ and $N(B)=N(C)$, then

$$
N(A)=N(C)
$$

(b) For all $A, B \in \mathscr{P}(X), A \mathbf{L} B \Leftrightarrow$ the number of elements in A is less than the number of elements in B.

Not reflexive, since $N(A) \notin N(A)$.
Not symmetric, since if $N(A)<N(B)$, then $N(B) \notin N(A)$.
Transitive: Yes, since if $N(A)<N(B)$ and $N(B)<N(C)$,
then $N(A)<N(C)$.
(c) For all $A, B \in \mathscr{P}(X), A \mathbf{N} B \Leftrightarrow$ the number of elements in A is not equal to the number of elements in B.

Not reflexive: since $N(A)=N(A)$, it's not true that $A N B$.
Symmetric: Yes, since if $N(A) \neq N(B)$, then $N(B) \neq N(A)$.
Not transitive: It could be true that $N(A) \neq N(B)$ and $N(B) \neq N(C)$ but $N(A)=N(C)$.
$R \subseteq A \times A$ If $(a, b) \in R$, then $a R b$.
a is related to b by R
6. Suppose R and S are reflexive relations on the same set A.
(a) Is $R \cup S$ a reflexive relation on A ? Prove your answer is correct.
R reflexive means $(a, a) \in R \quad \forall$ a, A note the conclusion
S reflexive means $(a, a) \in S \quad \forall a \in A$. would follow from either
Thus, for any $a \in A,(a, a) \in R U S$, so RUS is reflexive.
(b) Is $R \cap S$ a reflexive relation on A ? Prove your answer is correct.

$$
\begin{aligned}
& R \text { reflexive } \Rightarrow(a, a) \in R \quad \forall a \in A \\
& S \text { reflexive } \Rightarrow(a, a) \in S \quad \forall a \in A
\end{aligned}
$$

Both of these statements imply that $(a, a) \in R \cap S \forall a \in A$, So $R \cap S$ is reflexive.
(c) Is $R-S$ a reflexive relation on A ? Prove your answer is correct.

Since $(a, a) \in S, \quad(a, a) \notin R-S$ for any $a \in A$.
Thus R-S is not reflexive.

