Math 234

Equivalence Relations

1. Let $A=\{10,11,12,13,14\}$. The relation

$$
\mathbf{R}=\{(10,10),(10,14),(11,11),(11,13),(12,12),(13,11),(13,13),(14,10),(14,14)\}
$$

is an equivalence relation. What are the equivalence classes of \mathbf{R} ?
2. Let \mathbf{E} be a relation on the set \mathbf{Z} of all integers defined by

$$
m \mathbf{E} n \Leftrightarrow 4 \mid(m-n)
$$

(a) Prove that this relation \mathbf{E} is an equivalence relation by showing it is reflexive, symmetric and transitive.
(b) Describe the equivalence class [0] of \mathbf{E}.
(c) Describe the equivalence class [1] of \mathbf{E}.
(d) Describe the equivalence class [2] of \mathbf{E}.
(e) Describe the equivalence class $[-31]$ of \mathbf{E}.
(f) Describe all the equivalence classes of \mathbf{E}.
3. Let $A=\mathbf{Z} \times \mathbf{Z}$. Define a relation \mathbf{R} on A as follows: For all (a, b) and (c, d) in A,

$$
(a, b) \mathbf{R}(c, d) \Leftrightarrow a+d=c+b .
$$

(a) Is it true that $(1,2) \mathbf{R}(3,4)$? How about $(-1,4) \mathbf{R}(0,5)$?
(b) Is \mathbf{R} reflexive?
(c) Is \mathbf{R} symmetric?
(d) Is \mathbf{R} transitive?
(e) Is \mathbf{R} an equivalence relation?
(f) List four elements of $[(1,3)]$.
(g) List four elements of $[(-2,6)]$.
(h) Describe all the equivalence classes of \mathbf{R}.
4. Let X be a finite set. For all sets $U \in \mathscr{P}(X)$, let $N(U)$ denote the number of elements in U. Define a relation \mathbf{R} on $\mathscr{P}(X)$ by $U \mathbf{R} V$ if and only if $N(U)=N(U)$.
Show that \mathbf{R} is an equivalence relation. What are the equivalence classes of \mathbf{R} ?
5. Which of the following are partitions of the set $\mathbf{Z} \times \mathbf{Z}$ of ordered pairs of integers?
(a) the set of pairs (x, y) where x or y is odd, the set of pairs (x, y) where x is even, and the set of pairs (x, y) where y is even
(b) the set of pairs (x, y) where both x and y is odd, the set of pairs (x, y) where exactly one of x and y is odd, and the set of pairs (x, y) where both x and y are even
(c) the set of pairs (x, y) where $3 \mid x$ and $3 \mid y$, the set of pairs (x, y) where $3 \mid x$ and $3 \nmid y$, the set of pairs (x, y) where $3 \nmid x$ and $3 \mid y$, the set of pairs (x, y) where $3 \nmid x$ and $3 \nmid y$

Et the symbol \dagger means "does not divide"
6. A partition P_{1} is called a refinement of a partition P_{2} if every set in P_{1} is a subset of some set in P_{2}.
(a) Show that the partition formed from congruence classes modulo 6 is a refinement of the partition formed from congruence classes modulo 3 .
(b) If the partition formed from congruence classes modulo p is a refinement of the partition formed from congruence classes modulo q, what can you say about p and q ?

