Math 234

Equivalence Relations
Day 23

1. Let $A=\{10,11,12,13,14\}$. The relation

$$
\mathbf{R}=\{(10,10), \underline{(10,14)},(11,11),(\underline{11,13)},(12,12),(13,11),(13,13),(14,10),(14,14)\}
$$

is an equivalence relation. What are the equivalence classes of \mathbf{R} ?

$$
\begin{array}{ll}
\{10,14\} & \{12\} \\
\{11,13\} &
\end{array}
$$

2. Let \mathbf{E} be a relation on the set \mathbf{Z} of all integers defined by

$$
m \mathbf{E} n \Leftrightarrow 4 \mid(m-n) .
$$

(a) Prove that this relation \mathbf{E} is an equivalence relation by showing it is reflexive, symmetric and transitive.
reflexive: $\quad \forall n \in \mathbb{Z}, \quad 4 \mid n-n=0$, so $n E n$.
Symmetric if $m E_{n}$, then $4 \mid m-n$, so $4 / n-m$, which means $n E_{m}$.
transitive: suppose $m E n$. So $m-n=4 k$ for same $k \subseteq \mathbb{Z}$
suppose $n E p$. So $n-p=4 r$ for some $r \in \mathbb{Z}$. Then $m-p=(m-n)+(n-p)=m-p=4(k+r)$, so m Ep.
(b) Describe the equivalence class [0] of \mathbf{E}.

$$
\begin{aligned}
& \text { All multiples of } 4 . \quad 4 \mathbb{Z} \\
& \begin{array}{c}
\{4 k \\
\text { escribe the equivalence class }\{1\} \text { of } E, \\
\{8,-4,0,4,8, \ldots\}
\end{array}
\end{aligned}
$$

(c) Describe the equivalence class [1] of \mathbf{E}.

$$
\begin{aligned}
& \qquad\{x \in \mathbb{Z} \mid x=4 a+1 \text { for same } a \in \mathbb{Z}\} \\
& \{k \in \mathbb{Z} \mid k-1 \bmod 4=0\} \\
& \text { (d) Describe the equivalence class [2] of } \mathbf{E} \text {. } \\
& \qquad k \in \mathbb{Z} \mid k=4 a+2 \text { for some } a \in \mathbb{Z}\} \\
& k \in \mathbb{Z} \mid k \equiv 1(\bmod 4)\}
\end{aligned}
$$

(f) Describe all the equivalence classes of \mathbf{E}.

$$
\begin{aligned}
& \{\text { all multiples of } 4\} \\
& \{k \in \mathbb{Z} \mid k=4 a+1 \text { for some } a \in \mathbb{Z}\} \\
& \{k \in \mathbb{Z} \mid k=4 a+2 \text { for some } a \in \mathbb{Z}\} \\
& \{k \in \mathbb{Z} \mid k=4 a+3 \text { for some } a+\mathbb{Z}\}
\end{aligned}
$$

3. Let $A=\mathbf{Z} \times \mathbf{Z}$. Define a relation \mathbf{R} on A as follows: For all (a, b) and (c, d) in A,

$$
(a, b) \mathbf{R}(c, d) \Leftrightarrow a+d=c+b
$$

(a) Is it true that $(1,2) \mathbf{R}(3,4)$? How about $(-1,4) \mathbf{R}(0,5)$?

$$
\begin{aligned}
& (1,0) \notin(2,0) \\
& (2,4) \notin(1,4)
\end{aligned}
$$

(b) Is \mathbf{R} reflexive?

$$
Y_{e S},(a, b) R(a, b) \text { sine } a, b=a r b \quad \forall a, b \in \mathbb{Z} \text {. }
$$

(c) Is \mathbf{R} symmetric?

Yes: If $(a, b) R(c, d)$, then $(c, d) R(a, b)$.

$$
a+d=b+c \quad c+b=a+d
$$

(d) Is \mathbf{R} transitive?
Yes!
(f) List four elements of $[(1,3)]$.

$$
(0,2), \quad(17,19), \quad(25,27), \quad(-1,1)
$$

(g) List four elements of $[(-2,6)]$.

$$
(-4,4),(0,8),(4,12),(1729,1737)
$$

(h) Describe all the equivalence classes of \mathbf{R}.

$$
[(a, b)]=\{(c, d) \in \mathbb{Z} \times \mathbb{Z} \mid d-c=b-a\}
$$

equivalence classes consist of points on lines of

4. Let X be a finite set. For all sets $U \in \mathscr{P}(X)$, let $N(U)$ denote the number of elements in U.
we didn't
do this Show that \mathbf{R} is an equivalence relation. What are the equivalence classes of \mathbf{R} ?
in class reflexive: $U R U$ since $N(U)=N(U)$
symmetric: If $N(U)=N(V)$, then $N(V)=N(U)$ so $U R V \Leftrightarrow V R U$
transitive: If $N(U)=N(V)$ and $N(V)=N(W)$, then $N(U)=N(W)$.
so $U R V$ and $V R W \Rightarrow U R W$.
5. Which of the following are partitions of the set $\mathbf{Z} \times \mathbf{Z}$ of ordered pairs of integers?
we didn't do this in class
(a) the set of pairs $(x, y){ }^{\mathbf{A}}$ where x or y is odd, the set of pairs (x, y), ${ }^{\mathbf{B}}$ here x is even, and the ${ }^{\mathbf{C}}$ set of pairs (x, y) where y is even

Not a portion: for example, $(1,2)$ is in A and C
A
(b) the set of pairs (x, y) where both x and y is odd, the set of pairs (x, y) where exactly one of $\frac{x \text { and } y \text { is odd }}{B}$ and the set of pairs (x, y) where both x and y are even, Yes, this is a partition of $\mathbb{Z} \times \mathbb{Z}$.
(c) the set of pairs (x, y) where $3 \mid x$ and $3 \mid y$, the set of pairs (x, y) where $3 \mid x$ and $3 \nmid y$, the $L^{\text {set of pairs }(x, y) \text { where } 3 \nmid x \text { and } 3 \mid y \text {, the set of pairs }(x, y) \text { where } 3 \nmid x \text { and } 3 \nmid y}$

St the symbol \dagger means "does not divide"

Yes, this is a partition of $\mathbb{Z} \times \mathbb{Z}$.
6. A partition P_{1} is called a refinement of a partition P_{2} if every set in P_{1} is a subset of some set in P_{2}.
(a) Show that the partition formed from congruence classes modulo 6 is a refinement of the partition formed from congruence classes modulo $3 .[0]_{6} \leq[0]_{3},[1]_{6} \leq[1]_{3},[2]_{6} \leq[2]_{3},[3]_{6} \leq[0]_{3}$, congruence classes mod 3: $[4]_{6} \leq[1]_{3},[5]_{6} \leq[2]_{3}$

$$
\left.[0]_{3}\{\ldots, 0,3,6,9, \ldots\}, \quad[1]_{3}=\{\ldots, 1,4,\} 10, \ldots\right\},[2]_{3}\{\ldots, 2,5,8,11, \ldots\}
$$

congruence classes $\operatorname{mad} 6:[0]_{6}=\{\ldots, 0,6,12, \ldots\},[1]_{6}=\{\ldots 1,7,13, \ldots\},[2]_{6}=\{\ldots, 2,8,14, \ldots\}$

$$
[3]_{6}=\{\ldots, 3,9,15, \ldots\},[4]_{6}=\{\ldots, 4,10,16, \ldots\},[5]_{6}=\{5,11,17, \ldots\}
$$

(b) If the partition formed from congruence classes modulo p is a refinement of the partition formed from congruence classes modulo q, what can you say about p and q ?

