Math 234

Modular Arithmetic and \mathbf{Z}_n

- 1. (a) What is the value of 23 $\pmod{7}$?
 - (b) What is the value of $-12 \pmod{7}$?
 - (c) Is it true that 23 (mod 7) = $-12 \pmod{7}$?
 - (d) Is it true that $23 \equiv 12 \pmod{7}$?
- 2. Using the facts that $46 \equiv 7 \pmod{13}$ and $17 \equiv 4 \pmod{13}$, using modular arithmetic to efficiently find an integer $0 \le d \le 12$ such that
 - (a) $63 \equiv d \pmod{13}$. Note that 63 = 46 + 17.
 - (b) $29 \equiv d \pmod{13}$. Note that 29 = 46 17.
 - (c) $782 \equiv d \pmod{13}$. Note that $782 = 46 \times 17$.
 - (d) $143 \equiv d \pmod{13}$. Note that $143 = (2 \times 46) + (3 \times 17)$.
- 3. Find the units digit of 7^{2022} . Then do the same for 37^{2022} .

€**1** mod 10!

- 4. Recall that a **binary operation** on a set S is a function from $S \times S$ to S. Determine whether each of the functions below is a binary operation, and if so, identify set set S.
 - (a) The logical or operation, as in $r \lor s$, where r and s are logical true/false values.
 - (b) The logical and operation, as in $r \wedge s$, where r and s are logical true/false values.
 - (c) The logical implication operation, as in $r \to s$, where r and s are logical true/false values.
 - (d) The numerical less than operation, as in r < s, where r and s are real numbers.
- 5. Let \cdot be the usual multiplication operation for real numbers in some set S.
 - (a) If $S = \mathbf{R}$, is \cdot a binary operation?
 - (b) If $S = \mathbf{R}^+$, is \cdot a binary operation?
 - (c) If $S = \mathbf{Z}$, is \cdot a binary operation?
 - (d) If $S = \mathbf{Z}^-$ (negative integers), is \cdot a binary operation?
- 6. Let + be the usual addition operation on real numbers.
 - (a) If $A = \{x \mid x > 0\}$, is A closed under +?
 - (b) If $A = 2\mathbf{Z}$, the set of even integers, is A closed under +?
 - (c) If $A = \{n \in \mathbb{Z} \mid n \text{ is odd}\}$, is A closed under +?
 - (d) If $A = \mathbf{Q}$, is A closed under +?
 - (e) If $A = \mathbf{R} \mathbf{Q}$, is A closed under +?

- 7. Let $S = \{q + r\sqrt{2} \mid q, r \in \mathbf{Q}\}$ with the usual addition and multiplication of real numbers. Complete the following to establish that S is a commutative ring.
 - (a) Show that + and \cdot are commutative.

(b) Show that + and \cdot are associative.

(c) Show that + distributes over \cdot .

(d) Show that S contains an additive identity and a multiplicative identity.

(e) Show that each element of S has an additive inverse.

8. Let S be the set of all 2×2 matrices of real numbers. Let + be the usual matrix addition from linear algebra, and define a new "componentwise" multiplication \star as follows:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \star \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae & bf \\ cg & dh \end{bmatrix}$$

(a) Are + and \star commutative?

(b) Are + and \star associative?

(c) $Do + and \star satisfy the distributive property?$

(d) Is there an additive identity and a multiplicative identity?

(e) Are there additive inverses?

- (f) Is S with + and \star a commutative ring?
- 9. **BONUS:** Find the units digit of 42^{4017} .