Math 234

Modular Arithmetic and \mathbf{Z}_{n}

1. (a) What is the value of $23(\bmod 7)$?
(b) What is the value of $-12(\bmod 7)$?
(c) Is it true that $23(\bmod 7)=-12(\bmod 7)$?
(d) Is it true that $23 \equiv 12(\bmod 7)$?
2. Using the facts that $46 \equiv 7(\bmod 13)$ and $17 \equiv 4(\bmod 13)$, using modular arithmetic to efficiently find an integer $0 \leq d \leq 12$ such that
(a) $63 \equiv d(\bmod 13)$. Note that $63=46+17$.
(b) $29 \equiv d(\bmod 13)$. Note that $29=46-17$.
(c) $782 \equiv d(\bmod 13)$. Note that $782=46 \times 17$.
(d) $143 \equiv d(\bmod 13)$. Note that $143=(2 \times 46)+(3 \times 17)$.
3. Find the units digit of 7^{2022}. Then do the same for 37^{2022}.
4. Recall that a binary operation on a set S is a function from $S \times S$ to S. Determine whether each of the functions below is a binary operation, and if so, identify set set S.
(a) The logical or operation, as in $r \vee s$, where r and s are logical true/false values.
(b) The logical and operation, as in $r \wedge s$, where r and s are logical true/false values.
(c) The logical implication operation, as in $r \rightarrow s$, where r and s are logical true/false values.
(d) The numerical less than operation, as in $r<s$, where r and s are real numbers.
5. Let • be the usual multiplication operation for real numbers in some set S.
(a) If $S=\mathbf{R}$, is • a binary operation?
(b) If $S=\mathbf{R}^{+}$, is • a binary operation?
(c) If $S=\mathbf{Z}$, is • a binary operation?
(d) If $S=\mathbf{Z}^{-}$(negative integers), is • a binary operation?
6. Let + be the usual addition operation on real numbers.
(a) If $A=\{x \mid x>0\}$, is A closed under + ?
(b) If $A=2 \mathbf{Z}$, the set of even integers, is A closed under + ?
(c) If $A=\{n \in \mathbf{Z} \mid n$ is odd $\}$, is A closed under + ?
(d) If $A=\mathbf{Q}$, is A closed under + ?
(e) If $A=\mathbf{R}-\mathbf{Q}$, is A closed under + ?
7. Let $S=\{q+r \sqrt{2} \mid q, r \in \mathbf{Q}\}$ with the usual addition and multiplication of real numbers. Complete the following to establish that S is a commutative ring.
(a) Show that + and \cdot are commutative.
(b) Show that + and \cdot are associative.
(c) Show that + distributes over \cdot.
(d) Show that S contains an additive identity and a multiplicative identity.
(e) Show that each element of S has an additive inverse.
8. Let S be the set of all 2×2 matrices of real numbers. Let + be the usual matrix addition from linear algebra, and define a new "componentwise" multiplication \star as follows:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \star\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e & b f \\
c g & d h
\end{array}\right]
$$

(a) Are + and \star commutative?
(b) Are + and \star associative?
(c) Do + and \star satisfy the distributive property?
(d) Is there an additive identity and a multiplicative identity?
(e) Are there additive inverses?
(f) Is S with + and \star a commutative ring?
9. BONUS: Find the units digit of 42^{4017}.

