Math 234
Modular Arithmetic and \mathbf{Z}_{n}

1. (a) What is the value of $23(\bmod 7)$?

$$
23 \underset{\substack{\uparrow \\ \text { congruat }}}{\equiv 2}(\bmod 7) \quad\{0,1,2,3,4,5,6\}
$$

(b) What is the value of $-12(\bmod 7)$?

$$
-12=-14+2 \text { so }-12 \equiv 2(\bmod 7)
$$

(c) Is it true that $23(\bmod 7)=-12(\bmod 7)$?

$$
\text { Yes, since } 2=2
$$

(d) Is it true that $23 \equiv 12(\bmod 7)$?

No. $2 \neq 5 \quad 23$ is 2 more than a multiple of 7 , but 12 is 5 more than a multtleof 7
2. Using the facts that $46 \equiv 7(\bmod 13$ and $17 \equiv 4(\bmod 13)$, using modular arithmetic to efficiently find an integer $0 \leq d \leq 12$ such that
(a) $63 \equiv d(\bmod 13)$. Note that $63=46+17$.

$$
63 \equiv 7+4=11(\bmod 13) \quad 63=(4) 13+11
$$

(b) $29 \equiv d(\bmod 13)$. Note that $29=46-17$.

$$
29 \equiv 7-4=3(\bmod 13) \quad 29=2(13)+3
$$

(c) $782 \equiv d(\bmod 13)$. Note that $782=46 \times 17$.
multiples of 13 :
$13,26,39,52$

$$
\begin{aligned}
782 \equiv 7 \cdot 4=28 \equiv 2(\bmod 13) \quad 782 & =13(60)+2 \\
& =780+2
\end{aligned}
$$

(d) $143 \equiv d(\bmod 13)$. Note that $143=(2 \times 46)+(3 \times 17)$.

$$
143 \equiv(2 \times 7)+(3 \times 4)=14+12=26 \equiv 0(\operatorname{mad} 13)
$$

So $143 \equiv O(\bmod 13)$
3. Find the units digit of 7^{2022}. Then do the same for 37^{2022}.

Find a patten:

$$
\left.\begin{array}{l}
9 \cdot 7=63 \\
\text { so } 9 \cdot 7 \equiv 3(\operatorname{mad} 10) \\
7^{2} \cdot 7 \equiv 3(\bmod 10)
\end{array}\right\} \begin{aligned}
& 7^{2}=49=9(\bmod 10) \\
& 7^{3} \equiv 3 \quad(\bmod 10) \\
& 7^{4} \equiv 1 \quad(\bmod 10)
\end{aligned}
$$

$$
\begin{aligned}
& 2022=4 \cdot 505+2 \\
& \begin{aligned}
7^{2022}=7^{4 \cdot 505+2} & =\left(7^{4}\right)^{505} \cdot 7^{2} \\
& \equiv 1^{\text {sos }} \cdot 7^{2}(\bmod 10) \\
& \equiv 1 \cdot 9 \\
7^{2022} & \equiv 9(\bmod 10)
\end{aligned}
\end{aligned}
$$

$$
f: S \times s \rightarrow S
$$

4. Recall that a binary operation on a set S is a function from $S \times S$ to S. Determine whether each of the functions below is a binary operation, and if so, identify set set S.
(a) The logical or operation, as in $r \vee s$, where r and s are logical true/false values.

$$
\begin{aligned}
S & =\{\text { tr w, false }\} \quad v: S \times S \rightarrow S \\
S \times S & =\{(T, T),(T, T),(F, T),(F F)\}
\end{aligned} \quad \text { Yes! }
$$

(b) The logical and operation, as in $r \wedge s$, where r and s are logical true/false values.

r	s	$r \rightarrow s$
T	T	T
T	F	F
F	T	T
F	F	T

$$
\text { again, } S=\{\text { true, folse }\}
$$

$$
\wedge: S \times s \rightarrow s \quad \text { Yes! }
$$

(c) The logical implication operation, as in $r \rightarrow s$, where r and s are logical true/false values.
Yes, also a binary operation.
(d) The numerical less than operation, as in $r<s$, where r and s are real numbers.

$$
<: \mathbb{R} \times \mathbb{R} \rightarrow\{\text { true, false }\} \quad \text { Not a binary operation }
$$

5. Let • be the usual multiplication operation for real numbers in some set S.
(a) If $S=\mathbf{R}$, is • a binary operation?
Yes, since the product of two real numbers
(b) If $S=\mathbf{R}^{+}$, is • a binary operation?

Yes

(c) If $S=\mathbf{Z}$, is • a binary operation?

Yes
(d) If $S=\mathbf{Z}^{-}$(negative integers), is • a binary operation?

No, since the product of two negative integers is positive,
CLASS ENDED HERE -
6. Let + be the usual addition operation on real numbers.
(a) If $A=\{x \mid x>0\}$, is A closed under + ?
(b) If $A=2 \mathbf{Z}$, the set of even integers, is A closed under + ?
(c) If $A=\{n \in \mathbf{Z} \mid n$ is odd $\}$, is A closed under + ?
(d) If $A=\mathbf{Q}$, is A closed under + ?
(e) If $A=\mathbf{R}-\mathbf{Q}$, is A closed under + ?
7. Let $S=\{q+r \sqrt{2} \mid q, r \in \mathbf{Q}\}$ with the usual addition and multiplication of real numbers. Complete the following to establish that S is a commutative ring.
(a) Show that + and \cdot are commutative.
(b) Show that + and \cdot are associative.
(c) Show that + distributes over \cdot.
(d) Show that S contains an additive identity and a multiplicative identity.
(e) Show that each element of S has an additive inverse.
8. Let S be the set of all 2×2 matrices of real numbers. Let + be the usual matrix addition from linear algebra, and define a new "componentwise" multiplication \star as follows:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \star\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e & b f \\
c g & d h
\end{array}\right]
$$

(a) Are + and \star commutative?
(b) Are + and \star associative?
(c) Do + and \star satisfy the distributive property?
(d) Is there an additive identity and a multiplicative identity?
(e) Are there additive inverses?
(f) Is S with + and \star a commutative ring?
9. BONUS: Find the units digit of 42^{4017}.

