Homework 21

Math 234

due at classtime on Thursday, December 1

Write your solutions to the following problems clearly and neatly. You may write or type your solutions electronically, or write them on paper and scan or photograph them. Upload a single file containing your solutions to the Homework 21 assignment on the Moodle page for Math 234.

1. Which of the following functions is asymptotically smaller than the other?

$$f(n) = n^{14} \qquad \qquad g(n) = 14^n$$

- **2.** Let $f(n) \ll h(n)$ and $g(n) \ll h(n)$. Prove that $f(n) + g(n) \ll h(n)$.
- **3.** Let f(n) = n! and $g(n) = n \cdot n!$. Are these functions asymptotically similar? If not, which is asymptotically smaller? Use limits to show that your answer is correct.
- **4.** Let $f(n) = 2^n + 3$ and $g(n) = n^4 + 23$.
 - (a) Compute f(1) and g(1). Which is smaller?
 - (b) Compute f(2) and g(2). Which is smaller?
 - (c) Compute f(3) and g(3). Which is smaller?
 - (d) Are f(n) and g(n) asymptotically similar? If not, which is asymptotically smaller?
- **5.** Determine whether each of the following functions is O(x). Explain your answers.
 - (a) f(x) = 10
 - **(b)** $f(x) = x^2 + x + 1$
 - (c) f(x) = 3x + 4
 - (d) f(x) = |x|
- **6.** Determine whether each of the following functions is $O(x^2)$. Explain your answers.
 - (a) $f(x) = x \log x$
 - **(b)** $f(x) = x^2 + 1000$
 - (c) $f(x) = 2^x$
 - (d) $f(x) = |x| \cdot \lceil x \rceil$
- 7. Show that x^3 is $O(x^4)$ but x^4 is not $O(x^3)$.
- 8. Use big-O notation to express the asymptotic growth rate of each of the following functions. In each case, when you say that f(n) is O(g), your function g should have the smallest possible growth rate.
 - (a) $f(n) = (n^2 + 3)(n 2)$
 - **(b)** $f(n) = (2 \log n)(n+5)$
 - (c) $f(n) = 2^n(n^3 + 7n 1)$
 - (d) $f(n) = (n+2^n)(n!+99)$

9. Recall from linear algebra the algorithm for multiplying two $n \times n$ matrices.

If n = 1, the algorithm requires 0 additions and 1 multiplication.

$$[a] \cdot [b] = [ab]$$

If n=2, the algorithm requires $1 \cdot 2^2 = 4$ additions and $2^3 = 8$ multiplications.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + bg & cf + dh \end{bmatrix}$$

If n=3, the algorithm requires $2 \cdot 3^2=18$ additions and $3^3=27$ multiplications.

If n = 4, the algorithm requires $3 \cdot 4^2 = 48$ additions and $4^3 = 64$ multiplications.

- (a) How many additions are required to multiply two $n \times n$ square matrices? Your answer should depend on n.
- (b) How many multiplications are required to multiply two $n \times n$ square matrices? Your answer should depend on n.
- (c) Using big-O notation, how many total arithmetic operations (additions plus multiplications) are needed to multiply two $n \times n$ matrices?
- (d) If multiplying two 1000×1000 matrices together takes 5 seconds of CPU time, how much time, in minutes, should we expect the multiplication of two $10,000 \times 10,000$ matrices to take? How much time for two $500,000 \times 500,000$ matrices?