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Markov Chain Review

A Markov chain on n states S1, S2, . . . , Sn is defined by a n× n transition matrix P , were the entry Pi,j in
row i, column j gives the probability P [j → i] of transitioning from state Sj → Sj .

Here is a state diagram for three states.

S1

S2 S3

P [1 → 1]

P [1 → 2]

P [1 → 3]

P [2 → 2]

P [2 → 1]

P [2 → 3]

P [3 → 3]

P [3 → 1]

P [3 → 2]

The transition matrix of probabilities, with pi,j = P [j → i], is

P =

p11 p12 p13
p21 p22 p23
p31 p32 p33


Under very general hypotheses, the transition matrix P , will have a steady state vector vss satisfying

Pvss = vss.

In other words, vss is an eigenvector of P corresponding to eigenvalue 1.

For example, define the following transition matrix of probabilities (note that each column sums to 1).
P = matrix(c(1/2,1/4,1/4,1/6,1/3,1/2,1/5,1/5,3/5),nrow=3)
colSums(P)

## [1] 1 1 1

P

## [,1] [,2] [,3]
## [1,] 0.50 0.1666667 0.2
## [2,] 0.25 0.3333333 0.2
## [3,] 0.25 0.5000000 0.6

Here is the corresponding state diagram:
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Calculate the eigenstuff:
eigenStuff <- eigen(P)
eigenStuff

## eigen() decomposition
## $values
## [1] 1.0000000 0.2893150 0.1440184
##
## $vectors
## [,1] [,2] [,3]
## [1,] -0.4530270 -0.5927019 -0.1346523
## [2,] -0.4077243 -0.1899909 -0.6300988
## [3,] -0.7927972 0.7826928 0.7647511

The important information is that, yes, there is a eigenvalue of 1. It is also the largest eigenvalue. The
corresponding eigenvector is the first one. We can access easily.
eigenVecs <- eigenStuff$vectors
steadyStateVec <- eigenVecs[,1]
steadyStateVec

## [1] -0.4530270 -0.4077243 -0.7927972

This isn’t yet a steady state vector for the transition matrix. We need to normalize it so that the sum of
the entries is 1.
steadyStateVec <- steadyStateVec/sum(steadyStateVec)
steadyStateVec

## [1] 0.2739726 0.2465753 0.4794521

This is the steady state distribution. The system will be in S1 with probability 0.2739726, S2 with probability
0.2465753, and S3 with probability 0.4794521.

Agents again

Let’s simulate this Markov chain using agents. We will use a large number of agents and watch how they all
move around according to the probabilities defined by the transition matrix P . The idea is simple: if an
agent is in state j, then it will move probabilistically to its next state according to the probabilities defined
by P [, j], the jth column of P .
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Imagine a large number, N1, of agents in state S1. We can simulate where they go next using the sample
function.

Suppose we have N = 100 agents in state S1.
N1 <- 100
nextStates <- sample(1:3, N1, rep=T, prob=P[,1])
nextStates

## [1] 2 2 2 3 1 1 3 2 1 3 3 1 1 3 2 2 1 3 2 3 1 1 1 1 3 1 1 1 1 1 2 1 3 1 1
## [36] 3 1 2 3 1 1 2 2 2 2 1 2 3 3 1 2 1 1 1 3 1 1 3 2 2 3 1 2 3 1 1 1 3 3 3
## [71] 1 1 1 3 1 3 1 2 3 1 1 3 3 3 3 1 1 1 2 1 1 3 1 1 3 3 1 1 1 1

Each of the 100 agents ended up in one of S1, S2 or S3. Here’s how to tally the totals using the table
function. Doing so gives us the distribution of next states for these agents.
newDist <- as.vector(table(nextStates))
## do this to make sure all three states are represented.
newDist <- c(newDist, rep(0, 3-length(newDist)))
newDist

## [1] 50 20 30

In other words, out of our 100 agents,

• 50 ended up in S1,
• 20 ended up in S2,
• 30 ended up in S3,

We could, of course, play the same game with agents in S2 or S3. Over time, all these agents move between
the three states. Let’s simulate this process.

Start with a fixed number of agents arbitrarily distributed between the three states:
numAgents <- 100000
agents = sample(1:3, numAgents, rep=T)
numEachState <- as.vector(table(agents))
numEachState

## [1] 33396 33511 33093

Hence, initially we have :

• 33396 agents in S1
• 33511 agents in S2
• 33093 agents in S3

Now start them moving around:
nextState1 <- sample(1:3, numEachState[1], rep=T, prob=P[,1])
nextState2 <- sample(1:3, numEachState[2], rep=T, prob=P[,2])
nextState3 <- sample(1:3, numEachState[3], rep=T, prob=P[,3])

These aren’t much to look at. Looking at the first 50 just shows where these agents ended up.
head(nextState1, 50)

## [1] 3 3 1 3 2 3 1 2 2 1 3 3 1 1 3 3 3 3 3 1 3 1 2 1 2 1 2 2 1 2 3 1 1 1 1
## [36] 1 3 1 2 1 3 1 3 1 3 3 1 1 1 3

It helps to tally them as before.
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fromState1 <- as.vector(table(nextState1))
fromState2 <- as.vector(table(nextState2))
fromState3 <- as.vector(table(nextState3))

Each of these represents the flux out of each state. For example:
fromState1

## [1] 16688 8304 8404

This means that

• 16688 agents went from S1 to S1
• 8304 agents went from S1 to S2
• 8404 agents went from S1 to S3

The other two fromState tables contain similar data.

Adding all these together gives the new distribution of the agents after one step of the Markov chain.
numEachState = fromState1 + fromState2 + fromState3
numEachState

## [1] 28876 26085 45039

Hence, after one step of the Markov chain, we have:

• 28876 agents in S1
• 26085 agents in S2
• 45039 agents in S3

Compare this with what we had initially.

Of course, we want to do this a large number of times and see how the agents eventually distribute themselves
across the states. We can do this easily:
## distribute agents uniformly
agents = sample(1:3, numAgents, rep=T)
numEachState <- as.vector(table(agents))
numEachState

## [1] 33248 33522 33230

numSteps <- 100
for(m in 1:numSteps){

nextState1 <- sample(1:3, numEachState[1], rep=T, prob=P[,1])
nextState2 <- sample(1:3, numEachState[2], rep=T, prob=P[,2])
nextState3 <- sample(1:3, numEachState[3], rep=T, prob=P[,3])
##
fromState1 <- as.vector(table(nextState1))
fromState2 <- as.vector(table(nextState2))
fromState3 <- as.vector(table(nextState3))
##
numEachState <- fromState1 + fromState2 + fromState3

}
numEachState

## [1] 27629 24626 47745

It is better to look at these are proportions and compare to the steady state vector for the transitions matrix
P .
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numEachState/numAgents

## [1] 0.27629 0.24626 0.47745

steadyStateVec

## [1] 0.2739726 0.2465753 0.4794521

Pretty close! In other words, the agents are distributing themselves according the the steady state distribution
probabilities. This is as it should be.

Look more closely at all the fromState vectors
fromState1

## [1] 13879 6814 6877

fromState2

## [1] 4137 8071 12338

fromState3

## [1] 9613 9741 28530

Notice that the fluxes between the states are nearly balanced—the number of agents leaving an state Si

nearly equals the number coming into Si.

For example, at the end of the simulation, the number of states leaving S1 is given by
fromState1[2] + fromState1[3]

## [1] 13691

In comparison, the number of agents coming into S1 is
fromState2[1] + fromState3[1]

## [1] 13750

The numbers would be similar look at S2 or S3. This shows that the system is balanced, indicating that we
have reached the steady state distribution of agents.

Exercises

1. Five-State Markov Chain

Consider the following state graph.
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Build the 5× 5 transition matrix for this state graph. Once you have it,

• Find the steady-state distribution.
• Repeat the agents simulation as above. That is, show that, starting with a reasonably large number

of agents, that after a few hundred simulations, that the flow of agents in and out of each state are
roughly balanced.

2. Simulating a Game

Construct a transtion matrix TransProb for a game that involves moving through 8 positions, arranged in a
circle. These positions are the states of a Markov chain; we will denote the states as S1, S2, . . . , S8. S1 in the
first position, S2 is the second position, and so on.

In the game, suppose that you roll a dice that tells you how many positions to move. After you reach S8, the
next position is S1, and you go around again.

S1→ S2→ · · · → S8→ S1→ · · ·

Consider two versions of the game:

• Version 1: You move from one state to the next rolling a fair 3-sided die. Hence if you are in S3 and
roll a 2, you move to S5.
If you are in S7 and roll a 3 you move to S2.

• Version 2: Same as Version 1, but if you land in S5, then proceed directly to S1.

Construct transition matrices for both games. For each, explore the steady-state behavior. In other words,
what is the probability of being in a particular state, say S3, after a large number of rolls? Is it different for
the the different versions?

Do your work in this notebook, using RMarkdown to explain what you are doing and produce a nice-looking
solution in HTML or PDF form.
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3. Taxi Driver

A city has three different taxi zones, numbered 1, 2, and 3. A taxi driver operates in all three zones. The
probability that the driver’s next passenger has a destination in a particular one of these zones depends on
where the passenger is picked up. Specifically, whenever the taxi driver is in zone 1, the probability the next
passenger is going to zone 1 is .3, to zone 2 is .2, and to zone 3 is .5. Starting in zone 2, the probability that
the next passenger is going to zone 1 is .1, to zone 2 is .8, and to zone 3 is .1. Finally, whenever the taxi is in
zone 3, the probability the next passenger is going to zone 1 is .4, to zone 2 is .4, and to zone 3 is .2.

Use a Markov chain to simulate the taxi’s location in the city, and answer the following questions:

• What are the long-term probabilities of the driver being in each zone of the city?
• If the driver starts the day in zone 3 and transports ten passengers before lunch, what is the probability

that the driver will end up in zone 3 for lunch?
• Suppose that the fare for travel between zone 1 and zone 2 is $5, between zone 1 and zone 3 is $10,

and between zone 2 and zone 3 is $8. On average, how much money would the taxi driver collect from
transporting ten passengers? This may depend on where the driver starts. If so, in which zone should
the driver start to maximize the expected revenue from the next ten passengers?
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