PRIMES CONJECTURES

• Conjecture A. Every even integer greater than 2 is the sum of two primes.

Coldbach's conjecture not proved, no counterexample know.

• Conjecture B. For every N, the number of nonnegative integers less than N with an even number of prime factors is less than the number of nonnegative integers less than N with an odd number of prime factors. For this, prime factors are counted with multiplicity; e.g., $24 = 2^3 \cdot 3$ has 4 prime factors, while $588 = 2^2 \cdot 3 \cdot 7^2$ has 5 prime factors.

Polya Conjecture first contrexample. N= 906,150, 257

• Conjecture C. For every positive integer n, there exists at least one prime between n^2 and $(n+1)^2$.

Not proved, no counterexample known Legense's Conjecture

• Conjecture D. All odd numbers greater than 1 are either prime, or can be expressed as the sum of a prime and twice a square.

Counterexamples: 5777 and 5993

PRIME COUNTING FUNCTION:

 $\pi(x)$ is the number of primes $\leq x$

example: $\pi(5) = 3$

 $\pi(10) = 4$

Fast implementation:

prime list = $\{2, 3, 5, 7, (1), 13, 17, \dots, n\}$ c = 12845

Counts = {0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5...}

1=

Density	of primes near x:
What	proportion of numbers near x are prime?
examp	density $\approx \frac{\pi (1028) - \pi (980)}{40}$
	density $\approx \frac{\pi(1040) - \pi(1000)}{40}$
	density $\approx \frac{\pi(x+d) - \pi(x)}{d}$ $d > 0$
	Conjecture: prime density function looks like this
	$f(x) = \frac{1}{\ln(x)}$
	X
	le: prime Density [x-, d-]:= Module[{ } }]
examp	returns density at x
	(1) density List = Table [prime Density[n, 50], En, 1, 1000}
	List Plot [density List]
	(2) Plot [desit, List [Floor[x], 50], {x, 0, 1000}]