FIXED POINTS: $\quad x^{*}$ such that $x^{*}=f_{r}\left(x^{*}\right)$
$x^{*}=0$ is always

$$
f_{r}(x)=r x(1-x)
$$

$$
\begin{aligned}
& x^{*}=r(x)\left(1-x^{*}\right) \\
& 1=r\left(1-x^{*}\right) \text { if } x^{*} \neq 0 \\
& 1=r-r x^{*} \\
& r x^{*}=r-1 \\
& x^{*}=\frac{r-1}{r}
\end{aligned}
$$

Partial Summary:
$0 \leq r \leq 1$: one fixed point, $x^{*}=0$
$1<r<3$: two fixed points
$3<r<$?: approaches a 2 -cycle
$?<r<?$: approaches a 4 -cycle
? <r<? : \quad-cycle

