REVIEW: Choosing k items at of n

	ORDER IMPORTANT	ORDER NOT (MPORTANT
WITH REPLACEMENT	n^{k}	$\binom{k+n-1}{k}$
WITHOUT REPLACEMENT	$\frac{n!}{(n-k)!}$	$\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Conditional probability of A given B :

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

remains of A, given that
B occurs

1. The probability that Prisca studies for a test is 0.8 . The probability that she studies and passes the test is 0.7 . If Prisca studies, what is the probability that she passes the test?

Event that Prisca studies: B
Event that Prisca passes: A

$$
\begin{aligned}
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.7}{0.8} & =0.875 \\
& =87.5 \%
\end{aligned}
$$

2. A machine produces parts, 10% of which are defective. An inspector is able to remove 95% of the defective parts. What is the probability that a part is defective and removed by the inspector?

$$
\begin{aligned}
& P(\text { removed } \mid \text { defective })=0.95 \\
& P(\text { defective })=0.1 \\
& P(\text { defective } \cap \text { removed })=P(\text { removed } \mid \text { defective }) P(\text { defective })=(0.95)(0.1)=0.095
\end{aligned}
$$

Multiplication Rule: $P(A \cap B)=P(A \mid B) P(B)$
3. A soccer team wins 60% of its games when it scores the first goal, and 30% of its games when the opposing team scores first. If the team scores first in 40% of its games, what percent of its games does it win?

$$
\begin{aligned}
& P\left(\text { scores } \quad f_{\text {first }}\right)=0.4 \\
& P(\text { win } \mid \text { scores first })=0.6 \\
& P(\text { win } \mid \text { not first })=0.3 \\
& P(\text { win })=P(\text { win } \cap \text { score first })+P(\text { win } \cap \text { not first }) \\
& =P(\text { win } \mid \text { first }) P(\text { first })+P(\text { win } \mid \text { not first }) P(\text { not first })<\text { rule } \\
& =(0.6)(0.4)+P(0.3) P(0.6)=0.42
\end{aligned}
$$

LAW OF TOTAL probability:
If S is a collection of disjoint, exhaustive, events $A_{1}, A_{2}, \ldots, A_{k}$, then for any event B,

$$
P(B)=\sum_{i=1}^{k} P\left(B \mid A_{i}\right) P\left(A_{i}\right) .
$$

4. A factory uses 3 machines to produce certain items. Machine A produces 50% of the items, 6% of which are defective. Machine B produces 30% of the items, 4% of which are defective. Machine C produces 20% of the items, 3% of which are defective.
(a) What is the probability that a randomly-selected item is defective?

$$
\begin{aligned}
P(D) & =\underbrace{P(D \mid A) P(A)}_{P(D \cap A)}+\underbrace{P(D \mid B) P(B)}_{P(D \cap B)}+\underbrace{P(D \mid C) P(C)}_{P(D \cap C)} \\
& =(0.06)(0.5)+(0.04)(0.3)+(0.03)(0.2) \\
& =0.048
\end{aligned}
$$

(b) If an item is defective, what is the probability that it was produced by Machine A?

$P(A \mid D) P(D)=P(A \cap D)=P(D \mid A) P(A)$

Bayes' theorem:

$$
P(A \mid D)=\frac{P(D \mid A) P(A)}{P(D)}
$$

5. Suppose that a patient is tested for a disease. Let A be the event that the test is positive, and let D be the event that the patient actually has the disease. Further suppose that:
$P(A \mid D)=0.99 \quad$ (sensitivity: probability of a positive test if the patient has the disease)
$P\left(A^{\prime} \mid D^{\prime}\right)=0.99$ (specificity: probability of a negative test if the patient doesn't have the disease)
(a) Rare disease: If $P(D)=0.01$, what is the probability that a patient who tests positive actually has the disease?

(b) Common disease: If $P(D)=0.1$, what is the probability that a patient who tests positive actually has the disease?
