LAST TIME: If X, Y are independent, then $E(X Y)=E(X) E(Y)$ and the $\operatorname{Cov}(X, Y)=0$
$\longrightarrow X, Y$ are uncorrelated
In fact, if X and Y are independent, and $h(x, y)=g_{1}(x) g_{2}(y)$, then $E(h(X, Y))=E\left(g_{1}(X)\right) E\left(g_{2}(Y)\right)$.

NOTE: It might be that $E(X Y)=E(X) E(Y)$ for dependent random variables X and Y.

1. Let $X \sim \operatorname{Unif}[-1,1]$ and $Y=X^{2}$.
(a) Compute $E(X)$ and $E(X Y)$. Verify that $E(X Y)=E(X) E(Y)$.

$$
E(X)=\frac{-1+1}{2}=0 \text { and } E(X Y)=E\left(X^{3}\right)=\int_{-1}^{1} x^{3} \frac{1}{2} d x=0
$$

$E(X Y)=0$ and $E(X) E(Y)=0$ so, X and Y are uncorrelated
(b) Are X and Y independent? Why or why not?

No, X and Y are dependent, since the value of X determines the value of Y

ANOTHER EXAmple of dependent, uncorrelated rus:
$U \sim U \operatorname{Uif}[0,2 \pi], \quad X=\cos (U)$ and $\quad Y=\sin (U)$

LINEAR COMBINATIONS OF RANDOM VARIABLES
The $n=2$ case is most important:

$$
\begin{aligned}
& E\left(a_{1} X_{1}+a_{2} X_{2}+b\right)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+b \leftarrow \text { linearity of expected value } \\
& \operatorname{Var}\left(a_{1} X_{1}+a_{2} X_{2}+b\right)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+2 a_{1} a_{2} \operatorname{Cov}\left(X_{1}, X_{2}\right) \leftarrow \begin{array}{c}
\text { varime is is } \\
\text { linear }
\end{array}
\end{aligned}
$$

2. Let X_{1} and X_{2} be the numbers that appear on rolls of two standard, fair dice.
(a) What are $E\left(X_{i}\right)$ and $\operatorname{Var}\left(X_{i}\right)$?

$$
\begin{aligned}
& E\left(X_{i}\right)=\frac{1+2+3+4+5+6}{6}=\frac{7}{2} \\
& E\left(X_{i}^{2}\right)=\frac{1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}}{6}=\frac{91}{6}
\end{aligned}
$$

$$
\operatorname{Var}\left(X_{i}\right)=E\left(X_{i}^{2}\right)-E\left(X_{i}\right)^{2}=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12}
$$

(b) What and $E\left(X_{1}+X_{2}\right)$ and $\operatorname{Var}\left(X_{1}+X_{2}\right)$?

$$
E\left(X_{1}+X_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=7
$$

Since X_{1} and X_{2} are independent,

$$
\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)=\frac{35}{6}
$$

3. An urn contains balls labeled $1,2,3,4,5,6$. Let Y_{1} and Y_{2} be the numbers on two balls drawn without replacement from the urn.
(a) What are $E\left(Y_{i}\right)$ and $\operatorname{Var}\left(Y_{i}\right)$?

$$
E\left(Y_{i}\right)=\frac{7}{2} \text { and } \operatorname{Var}\left(\underline{Y}_{i}\right)=\frac{35}{12}
$$

(b) What and $E\left(Y_{1}+Y_{2}\right)$ and $\operatorname{Var}\left(Y_{1}+Y_{2}\right)$?

- We stopped here in class, but below are answers to \#4-6.

4. Generalize problem 2 to rolls of n dice. That is, find $E\left(X_{1}+\cdots+X_{n}\right)$ and $\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)$.

$$
E\left(X_{1}+\cdots+X_{n}\right)=E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)=\frac{7 n}{2}
$$

by independence, $\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=\frac{35 n}{12}$

$$
\begin{aligned}
& E\left(Y_{1}+Y_{2}\right)=E\left(Y_{1}\right)+E\left(Y_{2}\right)=7 \\
& \operatorname{Var}\left(Y_{1}+Y_{2}\right)=\operatorname{Var}\left(Y_{1}\right)+\operatorname{Var}\left(Y_{2}\right)+2 \operatorname{Cov}\left(Y_{1}, Y_{2}\right) \\
& =\frac{35}{12}+\frac{35}{12}+2\left(\frac{-7}{12}\right) \\
& =\frac{14}{3} \\
& E\left(Y_{1} Y_{2}\right)=\frac{1}{15}(2+3+4+5+6+6+8+10+12+ \\
& =\frac{175}{15}=\frac{35}{3}
\end{aligned}
$$

5. Similarly, extend problem 3 to choosing n balls from the urn.

$$
\begin{aligned}
& \text { As before, } \begin{aligned}
E\left(X_{1}+\cdots+X_{n}\right) & =\frac{7 n}{2} \text { but only for } n \in\{1,2, \ldots, 6\} \\
\text { However, now } \operatorname{Var}\left(X_{1}+\cdots+X_{n}\right) & =\sum_{i=1}^{n} \operatorname{Vor}\left(X_{i}\right)+2 \sum_{i=j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\frac{35 n}{12}+2 \frac{n^{2}-n}{2}\left(-\frac{7}{12}\right)=\frac{35 n-7 n^{2}+7 n}{12}=\frac{42 n-7 n^{2}}{12}=\frac{7 n(6-n)}{12} \text { for } n \in\{1, \ldots, 6\}
\end{aligned}
\end{aligned}
$$

Note that if $n=6$, the variance is zero.
6. Find the pmfs for the sums in problems 2-5.

