Math 262

Sections 4.3.1–4.3.2 Day 31

- 1. Let X and Y be independent uniform variables on [0,1], and let W=X+Y.
 - (a) What do you think the pdf of W will look like? Make a guess. Draw a sketch. Discuss with your neighbor.

(b) Use convolution to find a formula for the pdf of W.

2. Use convolution to write an integral that gives the pdf of the sum of three independent Unif[0, 1] random variables. How could you evaluate this integral?

- 3. Let $X_k \sim N(k,1)$ for $k \in \{1,2,\ldots,m\}$, and suppose all of the X_k are independent.
 - (a) What is the distribution of $X_1 + X_2 + \cdots + X_m$?

(b) What is the distribution of $X_1 + 2X_2 + 3X_3 + \cdots + mX_m$?

- 4. Use moment generating functions to justify the following statements.
 - (a) The sum of n independent exponential random variables with common parameter λ has a gamma distribution with parameters $\alpha = n$ and $\beta = 1/\lambda$.

(b) The sum of n independent geometric random variables with common parameter p has a negative binomial distribution with parameters r = n and p.

mgf reference:

Normal: $e^{\mu t + \sigma^2 t^2/2}$

Gamma: $\left(\frac{1}{1-\beta t}\right)^{\alpha}$

Geometric: $\frac{pe^t}{1-(1-p)e^t}$

Exponential: $\frac{\lambda}{\lambda - t}$ Gan Negative Binomial: $\left(\frac{pe^t}{1 - (1 - p)e^t}\right)^r$