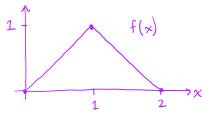
1. Let *X* be a continuous random variable with pdf

$$f(x) = \begin{cases} x & 0 \le x \le 1, \\ 2 - x & 1 \le x \le 2, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Sketch the pdf of *X*.



(b) Find the cdf of *X* and sketch it.

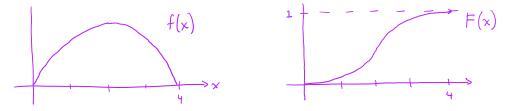
If
$$0 \le x \le 1$$
, then $F(x) = \int_{0}^{x} y \, dy = \frac{1}{2} y \Big|_{y=0}^{y=x} = \frac{1}{2} x^{2}$
 $cdf: P(X \le x)^{n}$ $f(X \le x)^{n}$
IF $1 \le x \le 2$, then $F(x) = \frac{1}{2} + \int_{1}^{x} (2-y) \, dy = \frac{1}{2} + \left[2y - \frac{1}{2}y^{2} \right]_{y=1}^{y=x} = 2x - \frac{x^{2}}{2} - 1$
 $P(X \le 1)^{n}$ $P(1 \le x \le x)^{3}$
Thus:
 $F(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{1}{2}x^{2} & \text{if } 0 \le x \le 1 \\ 2x - \frac{x^{2}}{2} - 1 & \text{if } 1 < x \le 2 \\ 1 & \text{if } 2 < x \end{cases}$

(c) What is
$$P(X < 1.5)$$
?
Find the area under the pdf left of $x = 1.5$.
 $P(X < 1.5) = \int_{-1}^{15} f(x) dx = \frac{7}{8}$

(d) Find a value $\eta_{0.75}$ such that $P(X \le \eta_{0.75}) = 0.75$.

Find C such $\frac{c^2}{2} = \frac{1}{4}$ so $\eta_{0.75} = 2 - \frac{12}{2}$ that $c \chi^{45^{\circ}}$ $c^2 = \frac{1}{2}$ ≈ 1.293 to $r_{0.75} = 1.293$ 2. Suppose that a continuous random variable *X* has pdf f(x) = kx(4 - x) for $0 \le x \le 4$, and f(x) = 0 otherwise.

(a) Sketch the pdf of *X*. Then, without computing anything, sketch the cdf of *X*.



(b) What is the value of *k*?

Remember that the pdf must integrate to 1:

$$\int_{0}^{4} kx (4-x) dx = \frac{32}{3} k = 1, \quad \text{so} \quad k = \frac{3}{32}.$$

(c) Find P(X > 3 or X < 1).

$$P(X > 3 \text{ or } X < 1) = \int_{0}^{1} f(x) dx + \int_{3}^{4} f(x) dx = 2 \int_{0}^{1} \frac{3}{32} x(4-x)$$

by symmetry of $f(x)$ about $x=2$
$$= \frac{3}{16} \left[2x^{2} - \frac{x^{3}}{3} \right]_{0}^{1} = \frac{3}{16} \left(2 - \frac{1}{3} \right) = \frac{5}{16}$$

- 3. Suppose that the cdf of a random variable *X* is $F(x) = 1 e^{-5x}$ for x > 0, and F(x) = 0 otherwise.
 - (a) What is the pdf of *X*? Sketch both the pdf and the cdf.

Differentiate the cdf to find the pdf:

$$f(x) = \frac{d}{dx}F(x) = \frac{d}{dx}(1 - e^{-5x}) = 5e^{-5x} \text{ for } x > 0.$$

$$f(x) = \frac{d}{dx}F(x) = \frac{d}{dx}(1 - e^{-5x}) = 5e^{-5x} \text{ for } x > 0.$$

- (b) What is $P\left(\frac{1}{4} < X < \frac{1}{3}\right)$? Can you get this from *either* the cdf or the pdf?
 - $cdf: P\left(\frac{1}{4} < X < \frac{1}{3}\right) = F\left(\frac{1}{3}\right) F\left(\frac{1}{4}\right) = \left(1 e^{-\frac{5}{4}}\right) \left(1 e^{-\frac{5}{4}}\right) = e^{-\frac{5}{4}} e^{-\frac{5}{3}} \approx 0.098$

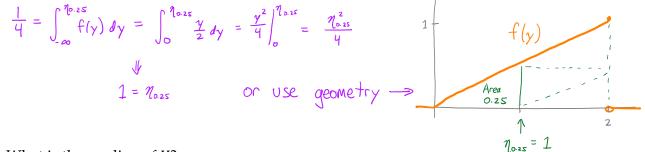
$$\mathsf{Pdf}: \qquad \mathsf{P}\left(\frac{1}{4} < X < \frac{1}{3}\right) = \int_{\frac{1}{4}}^{\frac{1}{3}} \mathsf{f}(x) dx = \mathsf{same}$$

4. Random variable *X* has pdf $f(x) = \begin{cases} ax + bx^2 & 0 < x < 1, \\ 0 & \text{otherwise.} \end{cases}$

Furthermore,
$$P\left(X < \frac{1}{2}\right) = \frac{3}{16}$$
. What is the median of X?
We need: $\int_{0}^{1} (ax + bx^{2}) dx = \frac{a}{2} + \frac{b}{3} = 1$ $\Rightarrow 3a + 2b = 6$
 $\int_{0}^{\frac{1}{2}} (ax + bx^{2}) dx = \frac{a}{2} \cdot \frac{1}{4} + \frac{b}{3} \cdot \frac{1}{8} = \frac{a}{8} + \frac{b}{24} = \frac{3}{16} \Rightarrow 3a + b = \frac{9}{2}$
Median: $\int_{0}^{1} (x + \frac{3}{2}x^{2}) dx = \frac{1}{2}\eta^{2} + \frac{1}{2}\eta^{3} = \frac{1}{2} \Rightarrow \eta^{2} + \eta^{3} = 1$
So we need $\eta^{3} + \eta^{2} - 1 = 0$, or $\eta \approx 0.755$
 E_{xact} : $\eta = \frac{1}{3} \left[-1 + \sqrt[3]{\frac{25}{3} - \frac{3\sqrt{69}}{2}} + \sqrt[3]{\frac{1}{2}(25 + 3\sqrt{69})} \right]$

5. Let *Y* be a random variable with pdf given by $f(y) = \begin{cases} \frac{y}{2} & \text{if } 0 \le y \le 2, \\ 0 & \text{otherwise.} \end{cases}$

(a) Find a value $\eta_{0.25}$ such that $P(Y \le \eta_{0.25}) = 0.25$.



(b) What is the median of *Y*?

