EXAM 1:	$A: 63-70$
	$B: 54-62$
	$C: 40-53$
	$D:$ below 40

Questions about the exam? Talk with Prof. Wright!

From last time:
3. An unknown number, N, of animals inhabit a certain region. To estimate the size of the population, ecologists perform the following experiment: They first catch M of these animals, mark them in some way, and release them. After allowing the animals to disperse throughout the region, they catch n of the animals and count the number, X, of marked animals in this second catch.

The ecologists want to make a maximum likelihood estimate of the population size N. This means that if the observed value of X is x, then they estimate the population size to be the integer N that maximizes the probability that $X=x$. Help them complete this estimate as follows.

$$
X \sim \operatorname{Hypergeometric}(n, M, N)
$$

Let $P_{x}(N)$ be the probability that $X=x$ given that N is the true population size.
So: $\quad P_{x}(N)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$ and $\frac{P_{x}(N)}{P_{x}(N-1)}=\frac{(N-M)(N-n)}{N(N+x-M-n)}$

$$
\frac{P_{x}(N)}{P_{x}(N-1)} \geq 1 \quad \text { iff } \quad \frac{(N-M)(N-n)}{N(N+x-M-n)} \geq 1
$$

iff $\quad(N-M)(N-n) \geq N(N+x-M-n)$
iff $\quad A^{2}-M A N-N n+M_{n} \geq A^{2}+N x-N K T=N K$

$$
\begin{array}{ll}
\text { iff } & M_{n} \geq N_{x} \\
\text { iff } & \frac{M_{n}}{x} \geq N
\end{array}
$$

If $N \leq \frac{M_{n}}{x}$, then $P_{x}(N) \geq P_{x}(N-1)$, so population size N is
more likely than population size $N-1$.
If $N>\frac{M_{M}}{x}$ then population size N is less likely than $N-1$.

The most likely population is the largest integer N that is less than or equal to $\frac{M_{1}}{x}$.
(f) If $M=30, n=20, x=7$, then max. likelihood estimate for N is: $\frac{M_{n}}{x}=\frac{30(20)}{7} \approx 85.7$ so $N=85$.

NEGATIVE BINOMIAL DISTRIBUTION
An experiment consists of a sequence of independent trials. Each trial results in either "success" or "failure." The probability of success is p for each trial. The experiment stops when a certain number, r, of successes have occurred. Let X be the number of trials necessary to achieve r successes.

Then $\quad X \sim \operatorname{NegativeBinomial}(r, p)$

$$
\text { pm: } \quad P(X=x)=\binom{x-1}{r-1} p^{r}(1-p)^{x-r}
$$

If $r=1$, then $X \sim$ Geometric (p)
pm: $\quad P(X=x)=(1-p)^{x-1} p$

