Wave Equation: d'Alembert's Solution
Math 330

1. Show that if F and G are any C^{2} functions, then $u(x, t)=F(x+c t)+G(x-c t)$ solves the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
2. Consider the wave equation on an infinite string,

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, t \geq 0
$$

with initial conditions $u(0, x)=f(x)$ and $\frac{\partial u}{\partial t}(0, x)=g(x)$.
(a) Consider the spacetime variables $\xi=x+c t$ and $\eta=x-c t$. Show that the PDE $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ transforms into $\frac{\partial^{2} u}{\partial \eta \partial \xi}=0$ with these new variables.

From last class:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial \xi^{2}}+2 \frac{\partial^{2} u}{\partial \xi \partial \eta}+\frac{\partial^{2} u}{\partial \eta^{2}} \\
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial \xi^{2}}-2 c^{2} \frac{\partial^{2} u}{\partial \xi \partial \eta}+c^{2} \frac{\partial^{2} u}{\partial \eta^{2}}
\end{aligned}
$$

Then $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ becomes $c^{2} \frac{\partial^{2} / u}{\partial \xi^{2}}-2 c^{2} \frac{\partial^{2} u}{\partial \xi \partial \eta}+c^{2} \frac{\partial^{2} / u}{\partial \eta^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial \xi^{2}}+2 \frac{\partial^{2} u}{\partial \xi \partial \eta}+\frac{\partial^{2} /}{\partial \eta^{2}}\right)$
so $O=4 c^{2} \frac{\partial^{2} u}{\partial \xi \partial \eta}$, which imp
0 is solved by $u(\xi, \eta)=p(\xi)+q(\eta)$.
(b) Integrate twice to show that $\frac{\partial^{2} u}{\partial \eta \partial \xi}=0$ is solved by $u(\xi, \eta)$
Integrate w.r.t. $\eta: \int \frac{\partial^{2} u}{\partial \eta \partial \xi} d \eta=\int 0 d \eta$

$$
\frac{\partial u}{\partial \xi}=r(\xi) \leftarrow \text { some function of } \xi
$$

Integrate w.r.t. $\xi: \quad \int \frac{\partial u}{\partial \xi} d \xi=\int r(\xi) d \xi$

$$
u(\xi, \eta)=p(\xi)+q(\eta)
$$ of $r(\xi)$

(c) Transform your solution $p(\xi)+q(\eta)$ back to the original coordinates x and t. Can you give a physical interpretation of this solution?

$$
\begin{array}{r}
\text { Since } \xi=x+c t \text { and } \eta=x-c t, \\
\text { the solution becomes } u(t, x)=\underbrace{p(x+c t)}_{\begin{array}{c}
\text { Wave traveling } \\
\text { left }
\end{array}}+\underbrace{p(x-c t)}_{\text {wave t }} \begin{array}{r}
\frac{\partial u}{\partial t}=c \cdot p(x+c t)-c \cdot q(x-c t) \\
\frac{\partial u}{\partial t}(0, x)=c \cdot p(x)-c \cdot q(x)
\end{array}
\end{array}
$$

(d) Substitute your solution into the two initial conditions. Integrate the second expression from 0 to x. Use algebra to solve for functions p and q.
Initial conditions: $u(0, x)=f(x)=p(x)+q(x)$ and $\frac{\partial u}{\partial t}(0, x)=g(x)=c p(x)-c q(x)$
(e) Manipulate your expressions to arrive at the solution

$$
u(t, x)=\frac{1}{2}[f(x-c t)+f(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\tau) d \tau
$$

This is known as D^{\prime} 'Alembert's solution.
3. Consider the following wave equation on an infinite medium $(-\infty<x<\infty)$:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, x)=\left\{\begin{array}{ll}
x, & 0<x<1 \\
2-x, & 1 \leq x<2, \\
0, & \text { otherwise }
\end{array} \quad \frac{\partial u}{\partial t}(0, x)=0\right.
$$

(a) Sketch what you think the solution should look like at $t=0, t=1$, and $t=2$ (without actually finding the solution yet).
(b) Find d'Alembert's solution to this wave equation.
(c) Use software to plot d'Alembert's solution at $t=0, t=1$, and $t=2$ to verify your earlier plot.
4. Find d'Alembert's solution to the following wave equation on an infinite medium:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{1}{4} \frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, x)=0, \quad \frac{\partial u}{\partial t}(0, x)=\cos (x)
$$

Use software to plot the wave profile over time.
5. For each of the following wave equations on an infinite medium, sketch (by hand) the wave profiles at $t=0, t=1$, and $t=2$ without solving the equations. Check your sketch using software.
(a) $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, x)=\left\{\begin{array}{ll}-1, & -1<x<0 \\ 1, & 0 \leq x<1 \\ 0, & \text { otherwise }\end{array} \quad, \quad \frac{\partial u}{\partial t}(0, x)=0\right.$
(b) $\frac{\partial^{2} u}{\partial t^{2}}=\frac{1}{4} \frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, x)=\left\{\begin{array}{ll}x, & -1<x<1 \\ 0, & \text { otherwise }\end{array}, \quad \frac{\partial u}{\partial t}(0, x)=0\right.$

