Improper Integrals

- 1. (a) Graphing time! Choose someone in your group to sketch the graph of $y = \frac{1}{x^2}$ on the wall near your table.
 - (b) Warm-up: Use the FTC to compute these progressively fun areas.

$$\int_{1}^{10} \frac{1}{x^2} dx$$

$$\int_{1}^{100} \frac{1}{x^2} \ dx$$

$$\int_{1}^{10} \frac{1}{x^{2}} dx \qquad \qquad \int_{1}^{1000} \frac{1}{x^{2}} dx \qquad \qquad \int_{1}^{1000} \frac{1}{x^{2}} dx$$

Draw the regions! Write out your answers as decimals numbers.

(c) Now use the FTC to find a formula for $\int_1^b \frac{1}{x^2} dx$.

 You can pretend
 Tour can be pretend
 You can be pretended
 You can be pret that b is some number larger than 1.

(d) Milo: Great! That must mean that $\int_{1}^{\infty} \frac{1}{x^2} dx$ equals 1.

Erez: Wait...what? Infinity in an integral? You can't just replace b with ∞ like that!

Ava: Yeah, ∞ is not a number.

Milo: I know it looks awful, but it works!

Group chat: What is Milo thinking? Can you make sense of $\int_{1}^{\infty} \frac{1}{x^2} dx$?

(a) Now use the FTC to compute the following:

$$\int_{1/10}^{1} \frac{1}{x^2} \ dx$$

$$\int_{1/100}^{1} \frac{1}{x^2} \ dx$$

$$\int_{1/1000}^{1} \frac{1}{x^2} \ dx$$

(b) **Group chat:** Now try to find a formula for $\int_a^1 \frac{1}{x^2} dx$.

Your formula will depend on a. You may suppose 0 < a < 1.

(c) **Ava:** Ooooh, now I want to calculate $\int_0^1 \frac{1}{x^2} dx$.

Erez (shaking head): You can't do that, because $\frac{1}{x^2}$ is not defined at x = 0.

Ava: True, but the integral still makes sense!

Group chat: Does $\int_0^1 \frac{1}{x^2} dx$ make sense? What happens to $\int_a^1 \frac{1}{x^2} dx$ as a gets closer and closer to zero?

3. (a) Find a formula for $\int_a^1 \frac{1}{x} dx$.

- (b) How should we evaluate $\int_0^1 \frac{1}{x} dx$?
- (c) How should we evaluate $\int_{-1}^{0} \frac{1}{x} dx$?
- (d) **Group chat:** How should we evaluate $\int_{-1}^{1} \frac{1}{x} dx$?

4. Evaluate $\int_0^4 \frac{1}{\sqrt{x}} dx$. Either determine the number that it converges to, or explain why it diverges.

5. Evaluate $\int_1^\infty \frac{1}{\sqrt{x}} dx$. Either determine the number that it converges to, or explain why it diverges.

6. Here is a graph of the function $f(x) = \sin(x)$:

(a) Quick! Without calculating any antiderivatives or doing any algebra, find each of the following:

$$\int_0^{2\pi} \sin(x) \ dx$$

$$\int_0^{4\pi} \sin(x) \ dx \qquad \qquad \int_0^{6\pi} \sin(x) \ dx$$

$$\int_0^{6\pi} \sin(x) \ dx$$

- (b) **Group chat:** Based on the previous question, what do you think $\int_0^\infty \sin(x) dx$ should equal?
- (c) Use the FTC to evaluate $\int_0^{\pi} \sin(x) dx$.

This is the area of one "bump" of the graph of sin(x).

(d) Without calculating any more antiderivatives or doing any more algebra, find each of the following:

$$\int_0^{3\pi} \sin(x) \ dx$$

$$\int_0^{5\pi} \sin(x) \ dx$$

$$\int_0^{3\pi} \sin(x) \ dx \qquad \qquad \int_0^{5\pi} \sin(x) \ dx \qquad \qquad \int_0^{7\pi} \sin(x) \ dx$$

- (e) **Group chat:** Based on the previous question, what do you think $\int_{0}^{\infty} \sin(x) dx$ should equal?
- (f) Group chat: Considering parts (b) and (e) above, what can we say about $\int_{-\infty}^{\infty} \sin(x) \ dx?$
- 7. Experiment time! Choose a few different values of p and compute $\int_{1}^{\infty} \frac{1}{x^{p}} dx$. For which values of p do you get an actual numerical answer?