
Dot Product

1. (a) In \mathbb{R}^2 , draw the line L through the points A=(0,0) and B=(3,2). What is the slope of L?

- (b) Draw the line M through point A that is perpendicular to L. What is the slope of line M?
- (c) Find a vector \mathbb{R}^2 that is *parallel* to L. How is your vector related to the slope of L?

 \mathfrak{D} Maybe use A and B?

- (d) Now, try to find a vector that is parallel to the line M (and thus perpendicular to L). How is this vector related to the previous vector that you found?
- **2.** (a) What is $\langle 3, 1 \rangle \cdot \langle 1, 2 \rangle$?
 - (b) What is $\langle -2, 1, 0 \rangle \cdot \langle 1, 0, 1 \rangle$?
 - (c) What is $\langle 3, 2 \rangle \cdot \langle 2, -3 \rangle$?

• Have you seen this recently?

(d) What is $\langle a,b,c\rangle \cdot \langle a,b,c\rangle ?$ How is this related to $|\langle a,b,c\rangle| ?$

 \Im Remember, $|\langle a,b,c\rangle|$ is the length of $\langle a,b,c\rangle$.

3. Group chat: Make a conjecture by filling in the blank.

Vectors \mathbf{u} and \mathbf{v} are perpendicular (or $\mathit{orthogonal}$) exactly when $\mathbf{u} \cdot \mathbf{v}$ equals ______.

4. Group experiment: If \mathbf{u} and \mathbf{v} are parallel vectors, how does $\mathbf{u} \cdot \mathbf{v}$ relate to $|\mathbf{u}|$ and $|\mathbf{v}|$?

Choose some parallel vectors and see what happens!

5. Group chat: Suppose **u**, **v**, and **w** are vectors of the same dimension, and *c* is a number. Which of the following statements are (always) true? Which statements are false?

(a)
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

(b)
$$(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w})$$

(c)
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

(d)
$$(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{v} \cdot \mathbf{u})$$

6. Let $\mathbf{u} = \langle 2, 0, 4 \rangle$ and $\mathbf{v} = \langle -1, 2, 3 \rangle$. If θ is the angle between \mathbf{u} and \mathbf{v} , find $\cos \theta$.

7. Find the angle between the vectors $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j}$ and $\mathbf{v} = -2\mathbf{i} + 4\mathbf{j}$.

8. Find the angle between the vectors (1,0,1) and **i**.