Cross Product

- 1. Compute the following cross products
 - (a) $\langle 1, 0, 0 \rangle \times \langle 0, 1, 0 \rangle$
 - (b) $\langle a, 0, 0 \rangle \times \langle 0, b, 0 \rangle$
 - (c) $\langle 1, 1, 1 \rangle \times \langle 2, 3, 4 \rangle$
- **2.** If you did #1(c) correctly, you should have gotten $\langle 1, -2, 1 \rangle$. Now compute both $\langle 1, 1, 1 \rangle \cdot \langle 1, -2, 1 \rangle$ and $\langle 2, 3, 4 \rangle \cdot \langle 1, -2, 1 \rangle$. What do you observe?
- **3. Group chat:** Examine all of the cross products you computed in #1. Make a conjecture about how $\mathbf{a} \times \mathbf{b}$ is related to vectors \mathbf{a} and \mathbf{b} .
- **4.** What is $\langle 2, 3, 4 \rangle \times \langle 1, 1, 1 \rangle$?
- **5. Group chat:** What do you think is the relationship between $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}$?
- **6. Experiment time:** If **a** and **b** are parallel vectors, what can you say about $\mathbf{b} \times \mathbf{a}$?

- 7. Consider the points A = (5, 2, 0), B = (2, 6, 1), C = (2, 4, 7), and D = (5, 0, 6).
 - (a) Sketch these points in \mathbb{R}^3 and show that they form a parallelogram.
 - (b) Use a cross product to find the area of this parallelogram.

8. Find the area of the parallelogram with vertices (0,0), (5,-2), (7,1), and (2,3).

 $\final \mathbb{R}^2$. Is that a problem?

9. Cleo: Hey Bastian, remember how a line is determined by two points?

Bastian: I sure do! Did you know that in \mathbb{R}^3 a plane is determined by three points?

Cleo: Yes—as long as all three points are not all on the same line.

Group chat: Does this make sense?

Challenge question: The plane P passes through the points A = (-1, 2, 3), B = (0, 3, 4), and C = (1, 5, 7). Can you find a vector \mathbf{n} that is orthogonal (perpendicular) to the plane P?

