Partial Derivatives

1. Look up at the wind chill function w(T, v) on the screen. What is w(-20, 15)? What does this mean?

 $\ \ \, \bigcirc$ Remember that T is temperature and v is wind speed.

- **2.** For all of the questions below, suppose that T = 10 and v = 15. Use the wind chill function on the screen to answer the following:
 - (a) If $\Delta T = 5$, what is Δw ?
 - (b) If $\Delta T = -5$, what is Δw ?
 - (c) **Group chat:** What is your best guess for Δw if $\Delta T = 1$? Why?

 \bigcirc Can you approximate $\frac{\Delta w}{\Delta T}$?

- (d) **Group chat:** What is your best guess for Δw if $\Delta T = -1$? Why?
- (e) What is your best guess for the derivative of w in the direction of T?
- (f) If $\Delta v = 5$, what is Δw ?
- (g) If $\Delta v = -5$, what is Δw ?
- (h) **Group chat:** What is your best guess for Δw if $\Delta v = 1$? Why?
- (i) **Group chat:** What is your best guess for Δw if $\Delta v = -1$? Why?
- (j) What is your best guess for the derivative of w in the direction of v?

- **3. Review:** Find the derivative of $f(x) = 2x^2 + 14$ with respect to x.
- **4.** Find the derivative of $f(x,y) = 2x^2 + 14y$ with respect to x, pretending that y is a constant.
- **5.** Now pretend that x is a constant and find the derivative of $f(x,y) = 2x^2 + 14y$ with respect to y.
- **6.** Suppose that $f(x,y) = x^2 + y^2 + xy^2$.
 - (a) What is the derivative of f with respect to x?
 - (b) What is the derivative of f with respect to y?
 - (c) What is the derivative of f with respect to x at the point (1,2)?
 - (d) **Lana:** OK, you that $f_x(1,2)$ is a number, but how can I *interpret* this? What does it mean?

Group chat: How would you answer Lana's question? Can you give an interpretation in words? Can you also draw a diagram to illustrate this derivative?

- (e) What is the derivative of f with respect to y at the point (1, 2)? What does this mean in words? Can you also give a graphical interpretation of this derivative?
- 7. The formula for the windchill function is $w = 35.74 + 0.6215T 35.75v^{0.16} + 0.4275Tv^{0.16}$. Use this to calculate the exact values of $\frac{\partial w}{\partial T}$ and $\frac{\partial w}{\partial v}$ when (T, v) = (10, 15).

Compare to your estimate from earlier!

- **8.** Let $f(x,y) = e^{x^2+y}$. Find the partial derivatives of f at the point (2,-1).
- **9.** Find the partial derivatives of $f(x,y) = \cos(x^2 3y)$ at the point $\left(0, \frac{\pi}{2}\right)$.