10/24/25, 1:28 PM 2025-10-22 solutions to exercises.ipynb

Kernel: SageMath 10.7

Solutions to Practice Exercises

Exercise 1

Complete the following function numRoots that determines the number of real roots of a quadratic
polynomial az? + bx + ¢ = 0. Your function should accept as arguments the three coefficients a, b,
and c. Your function should return an integer, either 0, 1, or 2.

Hint: Don't forget the quadratic formulal

B —b+b? — 4ac
o 2a

x

You can determine the number of real roots without actually finding the roots.

In [11' def numRoots(a, b, c):
d = b**2 - 4*g*c
if d > 0:
return 2
if d == 0:
return 1
if d < 0:
return 0

Here is some code for testing your numRoots function:

In [21* print(numRoots(1,2,1)) # should print 1
print(numRoots(1,3,2)) # should print 2
print(numRoots(1,0,1)) # should print ©

Out[2]: 1

2
0
Exercise 2

Complete the following function that computes an approximation of the number e using a partial sum
of the infinite series

21
e—=N" 2
23

(This is the Taylor series for e” evaluated at z = 1.) Your function should accept as a parameter the
number of terms of the series to add up. You may use the built-in factorial function.

about:blank 1/4

10/24/25, 1:28 PM 2025-10-22 solutions to exercises.ipynb

In [12]: gef approxE(numTerms) :
total = 0
for k in range(numTerms):
total = total + 1/factorial(k)
return total.n()

Here is some code for testing your approxE function:

In [13]: print(approxE(2)) # should print 2
print(approxE(5)) # should print 2.708333..
print(approxE(10)) # should print 2.71828...

Out[13]: 2.00000000000000
2.70833333333333
2.71828152557319

Exercise 3

Complete the following function invertible that determines whether or not a 2-by-2 matrix is
invertible. To do this, represent a matrix as a list of lists. For example, the matrix

=[5

should be storedas M = [[3, 5],[-1, 4]] Your function should take the matrix as a single
parameter. Your function should return True if the matrix is invertible, and False otherwise. Hint:
Remember the determinant of a matrix from linear algebra.

In [5]: def invertible(m):
det = m[O][O]*m[1][1] - m[O][1]*m[1][0O]
return det = 0

Here is some code for testing your invertible function:

In 1615 mat1 = (3, 51,[-1, 4]]
print(invertible(matl)) # should print True

mat2 = [[0, O],[1, 1]]
print(invertible(mat2)) # should print False

Out[6]: True
False

Exercise 4

Write a function that accepts as input a list of numbers and returns the harmonic mean of the numbers.
If the input sequence is x1, T2, . . . , Tn, then the return value should be:

n

Il
1 2

n

about:blank 2/4

10/24/25, 1:28 PM 2025-10-22 solutions to exercises.ipynb

In [14]: gef harmonicMean(seq):
total = 0
for x in seq:
total += 1/x
return len(seq)/total

Try it out:

In [16]: print(harmonicMean([2,2,21))
’)

1 2,21)
harmonicMean([2,3,4,5]1).n()
Out[1l6]: 2

3.11688311688312

Exercise 5

Write a function that accepts as input the coordinates of three points in the plane and returns the area
of the triangle whose vertices are those three points. You might compute the area using Heron's
Formula:

A=+/s(s—a)(s—b)(s—c)

a+b+c
2

where a, b, and ¢, are the side lengths, and s = is the semiperimeter of the triangle.

In [17]1: % this function accepts three points p, q, r, specified as pairs of
(x,y)-coordinates
def areaOfTriangle(p, q, r):
compute side lengths

a = sqrt((p[0]-q[0])**2 + (p[1]-q[1])**2)
b =sqrt((plO]-r[0])**2 + (p[1]-r[1])**2)
c =sqrt((r[0]-q[0])**2 + (r[1]-q[1l])**2)
compute semiperimeter

s=(a+b+c)/2

compute area

area = sqrt(s*(s - a)*(s - b)*(s - ¢))

return area

Try it out:

In [19]: % this triangle has area 0.5
areaOfTriangle([1,1],[2,1],[1,2]1).n()

Out[19]: 0.500000000000000

In [20]: | # this triangle has area 14
areaOfTriangle([-2,0]1,[3,-11,[1,5]).n()

Out[20]: 14.0000000000000

about:blank 3/4

https://en.wikipedia.org/wiki/Heron%27s_formula
https://en.wikipedia.org/wiki/Heron%27s_formula

10/24/25, 1:28 PM 2025-10-22 solutions to exercises.ipynb

Exercise 6

Write a function that computes the Catalan numbers C), using the following recurrence relation:

CO = 1and Cn+1 = E?:O CZCn,i

In [21]: 4 recursive solution: not efficient, but it works

def catalan(n):
if n == 0:
return 1

total = 0
for i in range(n):
total += catalan(i)*catalan(n-1-1i)

return total

Check that we get the Catalan numbers:

In [22]1: [catalan(n) for n in range(10)]

Out[22]: [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862]

about:blank

4/4

