
Kernel: SageMath 10.7

Solutions to Practice Exercises

Exercise 1

Complete the following function numRoots that determines the number of real roots of a quadratic
polynomial . Your function should accept as arguments the three coefficients , ,
and . Your function should return an integer, either 0, 1, or 2.

Hint: Don't forget the quadratic formula!

You can determine the number of real roots without actually finding the roots.

In [1]:

Here is some code for testing your numRoots function:

In [2]:

Out[2]: 1

2

0

Exercise 2

Complete the following function that computes an approximation of the number using a partial sum
of the infinite series

(This is the Taylor series for evaluated at .) Your function should accept as a parameter the
number of terms of the series to add up. You may use the built-in factorial function.

ax +2 bx + c = 0 a b

c

x = ​

2a
−b ± ​b − 4ac2

def numRoots(a, b, c):

 d = b**2 - 4*a*c

 if d > 0:

 return 2

 if d == 0:

 return 1

 if d < 0:

 return 0

print(numRoots(1,2,1)) # should print 1

print(numRoots(1,3,2)) # should print 2

print(numRoots(1,0,1)) # should print 0

e

e = ​ ​

k=0

∑
∞

k!
1

ex x = 1

10/24/25, 1:28 PM 2025-10-22 solutions to exercises.ipynb

about:blank 1/4

In [12]:

Here is some code for testing your approxE function:

In [13]:

Out[13]: 2.00000000000000

2.70833333333333

2.71828152557319

Exercise 3

Complete the following function invertible that determines whether or not a 2-by-2 matrix is
invertible. To do this, represent a matrix as a list of lists. For example, the matrix

should be stored as M = [[3, 5],[-1, 4]] Your function should take the matrix as a single
parameter. Your function should return True if the matrix is invertible, and False otherwise. Hint:
Remember the determinant of a matrix from linear algebra.

In [5]:

Here is some code for testing your invertible function:

In [6]:

Out[6]: True

False

Exercise 4

Write a function that accepts as input a list of numbers and returns the harmonic mean of the numbers.
If the input sequence is , then the return value should be:

def approxE(numTerms):

 total = 0

 for k in range(numTerms):

 total = total + 1/factorial(k)

 return total.n()

print(approxE(2)) # should print 2

print(approxE(5)) # should print 2.708333..

print(approxE(10)) # should print 2.71828...

M = ​ ​[
3

−1
5
4

]

def invertible(m):

 det = m[0][0]*m[1][1] - m[0][1]*m[1][0]

 return det != 0

mat1 = [[3, 5],[-1, 4]]

print(invertible(mat1)) # should print True

mat2 = [[0, 0],[1, 1]]

print(invertible(mat2)) # should print False

x ​,x ​, … ,x ​1 2 n

​

​ + ​ + ⋯ + ​

x ​1

1
x ​2

1
x ​n

1
n

10/24/25, 1:28 PM 2025-10-22 solutions to exercises.ipynb

about:blank 2/4

In [14]:

Try it out:

In [16]:

Out[16]: 2

3.11688311688312

Exercise 5

Write a function that accepts as input the coordinates of three points in the plane and returns the area
of the triangle whose vertices are those three points. You might compute the area using Heron's
Formula:

where , , and , are the side lengths, and is the semiperimeter of the triangle.

In [17]:

Try it out:

In [19]:

Out[19]: 0.500000000000000

In [20]:

Out[20]: 14.0000000000000

def harmonicMean(seq):

 total = 0

 for x in seq:

 total += 1/x

 return len(seq)/total

print(harmonicMean([2,2,2]))

harmonicMean([2,3,4,5]).n()

A = ​s(s − a)(s − b)(s − c)

a b c s = ​2
a+b+c

this function accepts three points p, q, r, specified as pairs of

(x,y)-coordinates

def areaOfTriangle(p, q, r):

 # compute side lengths

 a = sqrt((p[0]-q[0])**2 + (p[1]-q[1])**2)

 b = sqrt((p[0]-r[0])**2 + (p[1]-r[1])**2)

 c = sqrt((r[0]-q[0])**2 + (r[1]-q[1])**2)

 # compute semiperimeter

 s = (a + b + c)/2

 # compute area

 area = sqrt(s*(s - a)*(s - b)*(s - c))

 return area

this triangle has area 0.5

areaOfTriangle([1,1],[2,1],[1,2]).n()

this triangle has area 14

areaOfTriangle([-2,0],[3,-1],[1,5]).n()

10/24/25, 1:28 PM 2025-10-22 solutions to exercises.ipynb

about:blank 3/4

https://en.wikipedia.org/wiki/Heron%27s_formula
https://en.wikipedia.org/wiki/Heron%27s_formula

Exercise 6

Write a function that computes the Catalan numbers using the following recurrence relation:

 and

In [21]:

Check that we get the Catalan numbers:

In [22]:

Out[22]: [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862]

C ​n

C ​ =0 1 C ​ =n+1 ​ C ​C ​∑i=0
n

i n−i

recursive solution: not efficient, but it works

def catalan(n):

 if n == 0:

 return 1

 total = 0

 for i in range(n):

 total += catalan(i)*catalan(n-1-i)

 return total

[catalan(n) for n in range(10)]

10/24/25, 1:28 PM 2025-10-22 solutions to exercises.ipynb

about:blank 4/4

