
Kernel: SageMath 10.7

Prime Explorations
MATH 242 Modern Computational Mathematics

Sieve of Eratosthenes

Here is an implementation of the sieve of Eratosthenes.

In [3]:

In [4]:

Out[4]: [2, 3, 5, 7, 11, 13, 17, 19]

How efficient is the sieve of Eratosthenes?

In [8]:

Out[8]: CPU times: user 1.12 s, sys: 36.5 ms, total: 1.16 s

Wall time: 1.29 s

In [10]:

def sieveEratosthenes(nMax):

 # initialize a list

 # if you start the list from zero, then each number in the list is

EQUAL to its index in the list, which is very convenient

 nums = list(range(0, nMax + 1))

 # we will replace non-prime numbers in the list with zeros

 # start by replacing 1 with 0

 nums[1] = 0

 # loop over list items until we reach sqrt(nMax)

 i = 2

 while i <= sqrt(nMax):

 # if nums[i] is not zero, then it is prime

 if nums[i] > 0:

 # replace all multiples of nums[i] with zeros

 for j in range(2*i, nMax + 1, i):

 nums[j] = 0

 # testing: print the current state of nums

 #print(f"finished i={i}: nums={nums}\n")

 # increment i

 i += 1

 # return a list containing all nonzero elements of nums

 return [i for i in nums if i != 0]

sieveEratosthenes(20)

%time primeList = sieveEratosthenes(10^6)

%timeit primeList = sieveEratosthenes(10^6)

10/29/25, 4:24 PM classwork.ipynb

about:blank 1/5

Out[10]: 1.19 s ± 36.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [13]:

Out[13]: 1.2760725021362305

In [14]:

In [15]:

Out[15]: 1.5440020561218262

In [18]:

Out[18]: [0.9639081954956055,

 0.8714134693145752,

 1.1476995944976807,

 1.4889991283416748,

 1.813976526260376,

 2.0706636905670166,

 2.2892189025878906,

 2.1935744285583496,

 2.4208765029907227,

 1.1395301818847656]

In [22]:

Out[22]: [(100000, 0.9639081954956055),

 (200000, 0.8714134693145752),

 (300000, 1.1476995944976807),

 (400000, 1.4889991283416748),

 (500000, 1.813976526260376),

 (600000, 2.0706636905670166),

 (700000, 2.2892189025878906),

 (800000, 2.1935744285583496),

 (900000, 2.4208765029907227),

 (1000000, 1.1395301818847656)]

In [23]:

import time

startTime = time.time()

primeList = sieveEratosthenes(10^6)

endTime = time.time()

timeElapsed = endTime - startTime

timeElapsed

def measureRuntime(nMax):

 startTime = time.time()

 primeList = sieveEratosthenes(nMax)

 endTime = time.time()

 return endTime - startTime

measureRuntime(10^6)

nMaxVals = range(10^5, 10^6 + 1, 10^5)

runTimes = [measureRuntime(m) for m in nMaxVals]

runTimes

list(zip(nMaxVals, runTimes))

list_plot(list(zip(nMaxVals, runTimes)), axes_labels=["nMax","runtime"])

10/29/25, 4:24 PM classwork.ipynb

about:blank 2/5

Out[23]:

Units Digits of Primes

The only primes with a units digit of 2 or 5 are the primes 2 and 5. All other primes have a units digit of
1, 3, 7, or 9. How often do these digits occur?

Warm-Up

Consider the primes less than 100. Of these primes, count how many have each units digit 1, 3, 7, and 9.

In [0]:

In [0]:

Exploration

Now replace 100 by some other integer . How many primes less than or equal to have each units
digit 1, 3, 7, and 9? Consider various values of .

What patterns do you observe in your counts?

What questions arise during your exploration?

What conjectures can you make?

M M

M

10/29/25, 4:24 PM classwork.ipynb

about:blank 3/5

In [4]:

In [37]:

Out[37]: [5, 7, 6, 5]

In [5]:

Out[5]: [22, 24, 24, 23]

In [6]:

Out[6]: [40, 42, 46, 38]

In [7]:

Out[7]: [306, 310, 308, 303]

It looks like the counts of primes ending with 3 and 7 are slightly higher than the counts of primes ending
with 1 and 9. Is this always the case?

Extension

Instead of counting primes by their units digits, what if you count the primes by their remainders after
division by some other number? For example:

Are there more primes less than or equal to that are 1 more than a multiple of 3 or 2 more
than a multiple of 3? How does this depend on ?

How many primes less than or equal to are 1 more than a multiple of 8? ...3 more than a
multiple of 8? ...5 more than a multiple of 8? ...7 more than a multiple of 8? How do these counts
depend on ?

What questions arise during your exploration?

What conjectures can you make?

def countByUnit(primeList):

 counts = [0]*4

 for p in primeList:

 u = p % 10

 if u == 1:

 counts[0] += 1

 elif u == 3:

 counts[1] += 1

 elif u == 7:

 counts[2] += 1

 elif u == 9:

 counts[3] += 1

 return counts

primeList = sieveEratosthenes(100)

countByUnit(primeList)

primeList = sieveEratosthenes(500)

countByUnit(primeList)

primeList = sieveEratosthenes(1000)

countByUnit(primeList)

primeList = sieveEratosthenes(10000)

countByUnit(primeList)

M

M

M

M

10/29/25, 4:24 PM classwork.ipynb

about:blank 4/5

In [0]:

In [0]:

10/29/25, 4:24 PM classwork.ipynb

about:blank 5/5

