10/31/25, 3:23 PM classwork.ipynb

Kernel: SageMath 10.7

Counting Primes

MATH 242 Modern Computational Mathematics

First, here is a copy of our sieve of Eratosthenes from the previous class.

In [6]: gef sieveEratosthenes(nMax) :
initialize a list
if you start the list from zero, then each number in the list is
EQUAL to its index in the 1list, which is very convenient
nums = list(range(0, nMax + 1))

we will replace non-prime numbers in the list with zeros
start by replacing 1 with 0
nums[1] = 0O

loop over list items until we reach sqrt(nMax)
i=2
while i <= sqrt(nMax):
if nums[i] is not zero, then it is prime
if nums[i] > 0O:
replace all multiples of nums[i] with zeros
for j in range(2*i, nMax + 1, 1i):
nums[j] = 0

testing: print the current state of nums
print(f"finished i={i}: nums={nums}\n")

increment 1
i+=1

return a list containing all nonzero elements of nums
return [i for i in nums if i !'= 0]

The Prime Counting Function

Define the prime counting function 7r(zc) to be the number of primes less than or equal to any real
number x. For example, 7r(10) = 4 since there are 4 primes less than or equal to 10: specifically, 2, 3,
5,and 7.

Perhaps the simplest way to compute 7r(x) is to find the length of the list returned by
sieveEratos(x) .

In [10]1: def pi(x):

return len(sieveEratosthenes(floor(x)))

For example:

about:blank 15

10/31/25, 3:23 PM classwork.ipynb
In 71 pi(100)
OQut[7]: 25

In [11]: pi(100.4)
Out[11]: 25

We can then plot values of the prime counting function. First we need to make a list of values of 7r(a:)

In T15]: nMax = 1000
piVals = [pi(n) for n in range(2, nMax)]
print(piVals)

Out[15]: [1, 2, 2, 3, 3, 4, 4, 4, 4,5,5,6,6,6,6,7,7,8,8,8,8,9,9,9,09,
9, 9, 10, 1, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14,
14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18,
18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 23,
23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 26, 26,
27, 27, 27, 27, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30,
30, 30, 30, 30, 30, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 33, 33, 34, 34,
34, 34, 34, 34, 34, 34, 34, 34, 35, 35, 36, 36, 36, 36, 36, 36, 37, 37, 37,
37, 37, 37, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40,
41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 44, 44, 44, 44, 45,
45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 49, 49, 50, 50, 50, 50, 51, 51, 51,
51, 51, 51, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 54, 54, 54, 54,
54, 54, 55, 55, 55, 55, 55, 55, 56, 56, 56, 56, 56, 56, 57, 57, 58, 58, 58,
58, 58, 58, 59, 59, 59, 59, 60, 60, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 64,
64, 65, 65, 65, 65, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66,
67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 70,
70, 70, 70, 71, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 72, 72, 73, 73,
73, 73, 73, 73, 74, 74, 74, 74, 74, 74, 75, 75, 75, 75, 76, 76, 76, 76, 76,
76, 77, 77, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78, 79, 79, 79, 79, 79, 79,
79, 79, 8o, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 82, 82, 82, 82, 82,
82, 82, 82, 82, 82, 83, 83, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86,
86, 80, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 90,
%, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92,
92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95,
95, 96, 96, 96, 96, 96, 9%, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
99, 100, 1le0, 100, 100, 100, 100, 101, 101, 101, 101, 101, 101, 101, 101,
101, 101, 102, 102, 102, 102, 102, 102, 103, 163, 103, 103, 103, 103, 104,
104, 105, 105, 105, 105, 105, 105, 106, 106, 106, 106, 106, 106, 106, 106,
106, 106, 107, 107, 107, 107, 107, 107, 108, 168, 168, 108, 108, 108, 109,
109, 110, 110, 110, 110, 110, 110, 111, 111, 111, 111, 111, 111, 112, 112,
112, 112, 113, 113, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114,
114, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 116, 116, 117, 117,
117, 117, 118, 118, 118, 118, 118, 118, 119, 119, 119, 119, 119, 119, 120,
120, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 122, 122,
122, 122, 123, 123, 123, 123, 123, 123, 124, 124, 124, 124, 124, 124, 124,
124, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 126, 126, 126, 126,
126, 126, 126, 126, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 128,
128, 128, 128, 128, 128, 128, 128, 129, 129, 129, 129, 129, 129, 130, 130,
130, 130, 130, 130, 131, 131, 131, 131, 132, 132, 132, 132, 132, 132, 132,
132, 133, 133, 133, 133, 133, 133, 134, 134, 134, 134, 135, 135, 135, 135,
135, 135, 135, 135, 136, 136, 136, 136, 137, 137, 137, 137, 137, 137, 137,

about:blank 2/5

10/31/25, 3:23 PM

In [16]:

Out[16]:

about:blank

classwork.ipynb

137, 137, 137, 137, 137, 137, 137, 138, 138, 138, 138, 138, 138, 138, 138,
138, 138, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 140,
140, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 142, 142, 143, 143,
143, 143, 144, 144, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 146,
l46, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 147, 147,
147, 147, 148, 148, 149, 149, 149, 149, 150, 150, 150, 150, 150, 150, 150,
150, 150, 150, 150, 1560, 156, 1560, 151, 151, 151, 151, 152, 152, 153, 153,
153, 153, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154,
154, 154, 154, 154, 154, 154, 154, 155, 155, 155, 155, 156, 156, 156, 156,
156, 156, 156, 156, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 158,
158, 158, 158, 158, 158, 158, 158, 159, 159, 159, 159, 160, 160, 160, 160,
l60, 160, 161, 161, 161, 161, 161, 161, 162, 162, 162, 162, 162, 162, 162,
162, 162, 162, 162, 162, 162, 162, 163, 163, 163, 163, 164, 164, 164, 164,
l64, 164, 165, 165, 165, 165, 165, 165, 166, 166, 166, 166, 166, 166, 166,
166, 167, 167, 167, 167, 167, 167, 168, 168, 168]

Now we can plot the prime counting function.

list plot(list(zip(range(2,nMax), piVals)))

160 -

140 -
120 -
100
80 -
60
40 -

20~

T T T T T T T T T T T T T T T T T
200 400 600 800 1000
Unfortunately, this is inefficient because we are running the sieve of Eratosthenes for each individual

data point above.

We should be able to compute a single list of primes up to /N and get all of the counts from that list.
Let's do that in the next code cell:

3/5

10/31/25, 3:

In

In

Out

In

about:blank

23PM
[21]:

[23]:

[23]:

[30]:

classwork.ipynb

returns a list of values of the prime-counting function m(x), for
integers x from 1 to nMax
def computePiVals(nMax):

compute a list of primes up to nMax
primes = sieveEratosthenes(nMax)

make a list of nMax+1 zeros
piVals = [0]*(nMax + 1)

track how many primes we've found so far
count = 0

loop over integers i from 2 to nMax
for i in range(2, nMax + 1):
if 1 is the next prime, then add 1 to our count
#print(count)
if count < len(primes) and i == primes[count]:
count += 1

store the current count in piVals[i]
piVals[i] = count

return the list of piVals
return piVals

Try out this new function:

print(computePiVals(100))

[G' 0' 1I 2I 2’ 3’ 3’ 4’ 4’ 4’ 4’ 5’ 5’ 6’ 6’ 6’ 6’ 7’ 7’ 8’ 8’
% 9,9, 9, 110, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12,
14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17,

18,

18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 21, 21,

23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 25,

Now we can quickly compute a huge list of values of 7'('(:17) and make a plot.

nMax = 500
piVals =
plotl

computePiVals (nMax)

[Ilnll'll.r[(n)"])
plot2 = plot(sqrt(x), [x,0,nMax])
plotl + plot2

13,
17,
22,
25,

8, 8,9, 9,

13,
18,
22,
25,

list plot(list(zip(range(nMax), piVals)), axes labels=

14, 14,
18, 18,
22, 22,
25]

4/5

10/31/25, 3:23 PM classwork.ipynb

out[3e]: TI(N)

Exploration

Discuss with your group the following questions:
1. What is the shape of the graph of 7 ()? Can you find a simple function that approximates 7 (x)?
2. What proportion of the first /N positive integers are prime? How does this depend on N?

3. Use your best answers to the previous questions to the previous questions, how many primes do
you think are less than 102°? How many primes do you think are less than 101902

In [0]:

In [0]:

about:blank 5/5

