
Kernel: SageMath 10.7

Counting Primes
MATH 242 Modern Computational Mathematics

First, here is a copy of our sieve of Eratosthenes from the previous class.

In [6]:

The Prime Counting Function

Define the prime counting function to be the number of primes less than or equal to any real
number . For example, since there are 4 primes less than or equal to 10: specifically, 2, 3,
5, and 7.

Perhaps the simplest way to compute is to find the length of the list returned by
sieveEratos(x) .

In [10]:

For example:

def sieveEratosthenes(nMax):

 # initialize a list

 # if you start the list from zero, then each number in the list is

EQUAL to its index in the list, which is very convenient

 nums = list(range(0, nMax + 1))

 # we will replace non-prime numbers in the list with zeros

 # start by replacing 1 with 0

 nums[1] = 0

 # loop over list items until we reach sqrt(nMax)

 i = 2

 while i <= sqrt(nMax):

 # if nums[i] is not zero, then it is prime

 if nums[i] > 0:

 # replace all multiples of nums[i] with zeros

 for j in range(2*i, nMax + 1, i):

 nums[j] = 0

 # testing: print the current state of nums

 # print(f"finished i={i}: nums={nums}\n")

 # increment i

 i += 1

 # return a list containing all nonzero elements of nums

 return [i for i in nums if i != 0]

π(x)
x π(10) = 4

π(x)

def pi(x):

 return len(sieveEratosthenes(floor(x)))

10/31/25, 3:23 PM classwork.ipynb

about:blank 1/5

In [7]:

Out[7]: 25

In [11]:

Out[11]: 25

We can then plot values of the prime counting function. First we need to make a list of values of .

In [15]:

Out[15]: [1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9,

9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14,

14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18,

18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 23,

23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 26, 26,

27, 27, 27, 27, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30,

30, 30, 30, 30, 30, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 33, 33, 34, 34,

34, 34, 34, 34, 34, 34, 34, 34, 35, 35, 36, 36, 36, 36, 36, 36, 37, 37, 37,

37, 37, 37, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40,

41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 44, 44, 44, 44, 45,

45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47,

47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 49, 49, 50, 50, 50, 50, 51, 51, 51,

51, 51, 51, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 54, 54, 54, 54,

54, 54, 55, 55, 55, 55, 55, 55, 56, 56, 56, 56, 56, 56, 57, 57, 58, 58, 58,

58, 58, 58, 59, 59, 59, 59, 60, 60, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,

62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 64,

64, 65, 65, 65, 65, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66,

67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 70,

70, 70, 70, 71, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 72, 72, 73, 73,

73, 73, 73, 73, 74, 74, 74, 74, 74, 74, 75, 75, 75, 75, 76, 76, 76, 76, 76,

76, 77, 77, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78, 79, 79, 79, 79, 79, 79,

79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 82, 82, 82, 82, 82,

82, 82, 82, 82, 82, 83, 83, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86,

86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 90,

90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92,

92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95,

95, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,

98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,

99, 100, 100, 100, 100, 100, 100, 101, 101, 101, 101, 101, 101, 101, 101,

101, 101, 102, 102, 102, 102, 102, 102, 103, 103, 103, 103, 103, 103, 104,

104, 105, 105, 105, 105, 105, 105, 106, 106, 106, 106, 106, 106, 106, 106,

106, 106, 107, 107, 107, 107, 107, 107, 108, 108, 108, 108, 108, 108, 109,

109, 110, 110, 110, 110, 110, 110, 111, 111, 111, 111, 111, 111, 112, 112,

112, 112, 113, 113, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114,

114, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 116, 116, 117, 117,

117, 117, 118, 118, 118, 118, 118, 118, 119, 119, 119, 119, 119, 119, 120,

120, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 122, 122,

122, 122, 123, 123, 123, 123, 123, 123, 124, 124, 124, 124, 124, 124, 124,

124, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 126, 126, 126, 126,

126, 126, 126, 126, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 128,

128, 128, 128, 128, 128, 128, 128, 129, 129, 129, 129, 129, 129, 130, 130,

130, 130, 130, 130, 131, 131, 131, 131, 132, 132, 132, 132, 132, 132, 132,

132, 133, 133, 133, 133, 133, 133, 134, 134, 134, 134, 135, 135, 135, 135,

135, 135, 135, 135, 136, 136, 136, 136, 137, 137, 137, 137, 137, 137, 137,

pi(100)

pi(100.4)

π(x)

nMax = 1000

piVals = [pi(n) for n in range(2, nMax)]

print(piVals)

10/31/25, 3:23 PM classwork.ipynb

about:blank 2/5

137, 137, 137, 137, 137, 137, 137, 138, 138, 138, 138, 138, 138, 138, 138,

138, 138, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 140,

140, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 142, 142, 143, 143,

143, 143, 144, 144, 145, 145, 145, 145, 145, 145, 145, 145, 145, 145, 146,

146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 147, 147,

147, 147, 148, 148, 149, 149, 149, 149, 150, 150, 150, 150, 150, 150, 150,

150, 150, 150, 150, 150, 150, 150, 151, 151, 151, 151, 152, 152, 153, 153,

153, 153, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154,

154, 154, 154, 154, 154, 154, 154, 155, 155, 155, 155, 156, 156, 156, 156,

156, 156, 156, 156, 157, 157, 157, 157, 157, 157, 157, 157, 157, 157, 158,

158, 158, 158, 158, 158, 158, 158, 159, 159, 159, 159, 160, 160, 160, 160,

160, 160, 161, 161, 161, 161, 161, 161, 162, 162, 162, 162, 162, 162, 162,

162, 162, 162, 162, 162, 162, 162, 163, 163, 163, 163, 164, 164, 164, 164,

164, 164, 165, 165, 165, 165, 165, 165, 166, 166, 166, 166, 166, 166, 166,

166, 167, 167, 167, 167, 167, 167, 168, 168, 168]

Now we can plot the prime counting function.

In [16]:

Out[16]:

Unfortunately, this is inefficient because we are running the sieve of Eratosthenes for each individual
data point above.

We should be able to compute a single list of primes up to and get all of the counts from that list.
Let's do that in the next code cell:

list_plot(list(zip(range(2,nMax), piVals)))

N

10/31/25, 3:23 PM classwork.ipynb

about:blank 3/5

In [21]:

Try out this new function:

In [23]:

Out[23]: [0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9,

9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14,

14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 18, 18, 18,

18, 18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,

23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25]

Now we can quickly compute a huge list of values of and make a plot.

In [30]:

returns a list of values of the prime-counting function π(x), for

integers x from 1 to nMax

def computePiVals(nMax):

 # compute a list of primes up to nMax

 primes = sieveEratosthenes(nMax)

 # make a list of nMax+1 zeros

 piVals = [0]*(nMax + 1)

 # track how many primes we've found so far

 count = 0

 # loop over integers i from 2 to nMax

 for i in range(2, nMax + 1):

 # if i is the next prime, then add 1 to our count

 #print(count)

 if count < len(primes) and i == primes[count]:

 count += 1

 # store the current count in piVals[i]

 piVals[i] = count

 # return the list of piVals

 return piVals

print(computePiVals(100))

π(x)

nMax = 500

piVals = computePiVals(nMax)

plot1 = list_plot(list(zip(range(nMax), piVals)), axes_labels=

["n","π(n)"])

plot2 = plot(sqrt(x), [x,0,nMax])

plot1 + plot2

10/31/25, 3:23 PM classwork.ipynb

about:blank 4/5

Out[30]:

Exploration

Discuss with your group the following questions:

1. What is the shape of the graph of ? Can you find a simple function that approximates ?

2. What proportion of the first positive integers are prime? How does this depend on ?

3. Use your best answers to the previous questions to the previous questions, how many primes do
you think are less than ? How many primes do you think are less than ?

In [0]:

In [0]:

π(x) π(x)

N N

1020 10100

10/31/25, 3:23 PM classwork.ipynb

about:blank 5/5

