Kernel: SageMath 10.7

Counting Primes and the Riemann Zeta
Function

MATH 242 Modern Computational Math

Today we will continue our study of the prime counting function 71'(1:) which is defined to be the number
of primes less than or equal to .

Remember our big question from last time: What is the shape of the prime counting function? In
other words, can we approximate the prime counting function with simpler functions?

Here is our sieve of Eratosthenes function from a previous class session:

In [111 gef sieveEratosthenes(nMax):
initialize a list
if you start the list from zero, then each number in the list is
EQUAL to its index in the list, which is very convenient
nums = list(range(0, nMax + 1))

we will replace non-prime numbers in the list with zeros
start by replacing 1 with 0
nums[1] = 0O

loop over list items until we reach sqrt(nMax)
i=2
while i <= sqrt(nMax):
if nums[i] is not zero, then it is prime
if nums[i] > 0O:
replace all multiples of nums[i] with zeros
for j in range(2*i, nMax + 1, i):
nums[j] = 0O

testing: print the current state of nums
#print(f"finished i={i}: nums={nums}\n")

increment 1
i+=1

return a list containing all nonzero elements of nums
return [1 for i in nums if i != 0]

Here is our function from Friday that returns a list of values of the prime counting function 7r(x).

In [2]: # returns a list of values of the prime-counting function m(x), for
integers x from 1 to nMax
def computePiVals(nMax):
compute a list of primes up to nMax
primelList = sieveEratosthenes(nMax)

make a list of nMax+1l zeros
piVals = [0]*(nMax+1)

track how many primes we've found so far
count = 0

loop over integers i from 2 to nMax
for i in range(2, nMax + 1):
if 1 is the next prime, then add 1 to our count
if count < len(primelList) and i == primelList[count]:
count += 1 # we found the next prime

store the current count in piVals[i]
piVals[i] = count

return the list of piVals
return piVals

Let's make a big list of 7(x) values for integers x from 0 up to some large M.

In [14]: nMax = 200000
piVals = computePiVals(nMax)
piVals[:20]
Qut[14]: [e, ©, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8]

In the homework for today, we considered ﬁ as a possible approximation of 7r(a:) Make a plot

comparing ln(iw) and ().
In [61: ymin = 2
xMax = 10000

combined = list plot(piVals[xMin:xMax], color="green",
legend label='n(x)"') + plot(x/log(x), (x,xMin,xMax),
legend label="x/log(x)")

combined.show(legend loc="lower right")

Out[6]:

In [8]:

In

[19]:

12 DD‘_
lDDD-:
BDD-:
GDD-:

400

200

« T(x)
—x/log(x)

T
8000 10000

T
2000

Density of Primes

Roughly speaking, the density of primes near x is the proportion of integers near x that are prime. We
can approximate the density of primes near x by fixing some length £ and computing the proportion of
integers in the interval (ZB, T + é) that are prime. In other words, the density of primes near x is
approximately

m(x +£) — m(x)
14

Complete the following function that approximates the density of primes near x:

def primeDensity(x, length):
return (piVals[x+length] - piVals[x])/length

Make some plots of your prime density function for different values of x and length .

xVals = range(50,150001)
length = 2000
densityVals = [primeDensity(x,length) for x in xVals]

list plot(list(zip(xVals,densityVals))) + plot(1/log(x), (x, 50,
150000), color="red")

Out[19]:

In [0]:

In [0]:

In [0]:

0.25

0.20 ~

0.15

0.10

0] 20000 40000 60000 80000 100000 120000 140000

In the late eighteenth century, using printed tables of prime numbers, Gauss conjectured that the

density of primes near x is approximately @ Can you provide computational evidence for or against

Gauss's conjecture?

The Logarithmic Integral

1
In(x)

approximately the integral fom ﬁdt. This integral has a special name and notation:

If the density of primes near x is approximately , then the count of primes up to « should be

Definition: The logarithmic integral, li(z) is defined

. !
11(:1:):/O mdt.

This integral is a bit tricky to compute, but fortunately it is already implemented in Sage as 1i() and
also as log_integral() .

In [0]:

Compute some values of li(z). How do they compare to 7(x) and ﬁ?

In [0]:
In [0]:
Make a plot showing the values of 7 (z), Iz and li(z). What do you observe?
In 12312 ymin = 2
xMax = 5000
combined = list plot(piVals[xMin:xMax], color="green",
legend label="m(x)"') + plot(x/log(x), (x,xMin,xMax),
legend label="x/log(x)") + plot(li(x), (x, xMin, xMax),
legend label="'li(x)"', color='red"')
combined.show(legend loc="lower right")
Out[23]:
ﬁDD:
SDD:
400
300 ~
200
100
1000 2000 3000 4000 5000
In [0]:

The Riemann Zeta Function

To find an even better approximation to the prime counting function, we must learn about a function
called the Riemann zeta function. This function leads to one of the most important open questions in
mathematics, the Riemann Hypothsis, which is a statement about the zeros of the Riemann zeta
function.

The Riemann zeta function, (), is defined

1 1 1 1 1 1
() =Y = bbb

The Riemann zeta function converges for all s > 1. Moreover, it converges for all complex numbers s
with real part greater than 1. However, for s = 1 the sum diverges, so (1) is undefined.

Write a Python function below that approximates C(s) by computing a partial sum of numterms terms.

In [24]: {ef zeta(s, numTerms):
return sum([1/(n"s) for n in range(1l, numTerms+1)])

Use your zeta function to compute decimal approximations of (2), {(3), ((4), What do you
notice? Can you find closed-form expressions for any of these values?

In [29]: seta(2, 10000).n()
0ut[29]: 1.64483407184806

In [28]: n(piA2/6)

Out[28]: 1.64493406684823

In [0]:
One connection between the Riemann zeta function and the prime numbers has to do with the following
product:
Il —
i —S§
p prime 1 p
This is a product over all prime numbers p.
Write a Python function below that computes partial products of this infinite product. Take the primes in
order, starting with the smallest prime.
In [0]:

def primeProduct(s, numFactors):

YOUR CODE HERE

In [0]:
In [0]:

—L 9
ime T
d H prime
s)and]|,
ction between ((s)
ne
is the con
What is

