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Counting Primes and the Riemann Zeta
Function
MATH 242 Modern Computational Math

Today we will continue our study of the prime counting function , which is defined to be the number
of primes less than or equal to .

Remember our big question from last time: What is the shape of the prime counting function? In
other words, can we approximate the prime counting function with simpler functions?

Here is our sieve of Eratosthenes function from a previous class session:

In [1]:

Here is our function from Friday that returns a list of values of the prime counting function .

In [2]:

π(x)
x

def sieveEratosthenes(nMax):

    # initialize a list

    # if you start the list from zero, then each number in the list is 

EQUAL to its index in the list, which is very convenient

    nums = list(range(0, nMax + 1))

    

    # we will replace non-prime numbers in the list with zeros

    # start by replacing 1 with 0

    nums[1] = 0

    

    # loop over list items until we reach sqrt(nMax)

    i = 2

    while i <= sqrt(nMax):

        # if nums[i] is not zero, then it is prime

        if nums[i] > 0:

            # replace all multiples of nums[i] with zeros

            for j in range(2*i, nMax + 1, i):

                nums[j] = 0

        

        # testing: print the current state of nums

        #print(f"finished i={i}: nums={nums}\n")

        

        # increment i

        i += 1

        

    # return a list containing all nonzero elements of nums

    return [i for i in nums if i != 0]

π(x)

# returns a list of values of the prime-counting function π(x), for 

integers x from 1 to nMax

def computePiVals(nMax):

    # compute a list of primes up to nMax

    primeList = sieveEratosthenes(nMax)



Let's make a big list of  values for integers  from  up to some large .

In [14]:

Out[14]: [0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8]

In the homework for today, we considered  as a possible approximation of . Make a plot

comparing  and .

In [6]:

    # make a list of nMax+1 zeros

    piVals = [0]*(nMax+1)

    # track how many primes we've found so far

    count = 0

    # loop over integers i from 2 to nMax

    for i in range(2, nMax + 1):

        # if i is the next prime, then add 1 to our count

        if count < len(primeList) and i == primeList[count]:

            count += 1  # we found the next prime

        # store the current count in piVals[i]

        piVals[i] = count

    # return the list of piVals

    return piVals

π(x) x 0 M

nMax = 200000

piVals = computePiVals(nMax)

piVals[:20]

​ln(x)
x π(x)

​ln(x)
x π(x)

xMin = 2

xMax = 10000

combined = list_plot(piVals[xMin:xMax], color="green", 

legend_label='π(x)') + plot(x/log(x),(x,xMin,xMax), 

legend_label="x/log(x)")

combined.show(legend_loc="lower right")



Out[6]:

Density of Primes

Roughly speaking, the density of primes near  is the proportion of integers near  that are prime. We
can approximate the density of primes near  by fixing some length  and computing the proportion of
integers in the interval  that are prime. In other words, the density of primes near  is
approximately

Complete the following function that approximates the density of primes near :

In [8]:

Make some plots of your prime density function for different values of x  and length .

In [19]:
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def primeDensity(x, length):

    return (piVals[x+length] - piVals[x])/length

xVals = range(50,150001)

length = 2000

densityVals = [primeDensity(x,length) for x in xVals]

list_plot(list(zip(xVals,densityVals))) + plot( 1/log(x), (x, 50, 

150000), color="red")



Out[19]:

In [0]:

In the late eighteenth century, using printed tables of prime numbers, Gauss conjectured that the
density of primes near  is approximately . Can you provide computational evidence for or against

Gauss's conjecture?

In [0]:

In [0]:

The Logarithmic Integral

If the density of primes near  is approximately , then the count of primes up to  should be

approximately the integral . This integral has a special name and notation:

Definition: The logarithmic integral,  is defined

This integral is a bit tricky to compute, but fortunately it is already implemented in Sage as li()  and

also as log_integral() .

x ​ln(x)
1

x ​ln(x)
1 x

​ ​dt∫0
x

ln(t)
1
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li(x) = ​ ​dt.∫
0

x

ln(t)
1



In [0]:

Compute some values of . How do they compare to  and ?

In [0]:

In [0]:

Make a plot showing the values of , , and . What do you observe?

In [23]:

Out[23]:

In [0]:

The Riemann Zeta Function

li(x) π(x) ​ln(x)
x

π(x) ​ln(x)
x li(x)

xMin = 2

xMax = 5000

combined = list_plot(piVals[xMin:xMax], color="green", 

legend_label='π(x)') + plot(x/log(x),(x,xMin,xMax), 

legend_label="x/log(x)") + plot( li(x), (x, xMin, xMax), 

legend_label='li(x)', color='red' )

combined.show(legend_loc="lower right")



To find an even better approximation to the prime counting function, we must learn about a function
called the Riemann zeta function. This function leads to one of the most important open questions in
mathematics, the Riemann Hypothsis, which is a statement about the zeros of the Riemann zeta
function.

The Riemann zeta function, , is defined

The Riemann zeta function converges for all . Moreover, it converges for all complex numbers 
with real part greater than . However, for  the sum diverges, so  is undefined.

Write a Python function below that approximates  by computing a partial sum of numterms  terms.

In [24]:

Use your zeta  function to compute decimal approximations of . What do you

notice? Can you find closed-form expressions for any of these values?

In [29]:

Out[29]: 1.64483407184806

In [28]:

Out[28]: 1.64493406684823

In [0]:

One connection between the Riemann zeta function and the prime numbers has to do with the following
product:

This is a product over all prime numbers .

Write a Python function below that computes partial products of this infinite product. Take the primes in
order, starting with the smallest prime.

In [0]:
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def zeta(s, numTerms):

  return sum( [1/(n^s) for n in range(1, numTerms+1)] )

ζ(2), ζ(3), ζ(4), …

zeta(2, 10000).n()

n(pi^2/6)
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def primeProduct(s, numFactors):

  # YOUR CODE HERE



In [0]:

In [0]:

What is the connection between  and ?ζ(s) ​ ​∏p prime 1−p−s
1


