Kernel: SageMath 10.7

Counting Primes and the Riemann Zeta Function

MATH 242 Modern Computational Math

Today we will continue our study of the *prime counting function* $\pi(x)$, which is defined to be the number of primes less than or equal to x.

Remember our big question from last time: *What is the shape of the prime counting function?* In other words, can we approximate the prime counting function with simpler functions?

Here is our sieve of Eratosthenes function from a previous class session:

```
In [1]:
         def sieveEratosthenes(nMax):
             # initialize a list
             # if you start the list from zero, then each number in the list is
         EQUAL to its index in the list, which is very convenient
             nums = list(range(0, nMax + 1))
             # we will replace non-prime numbers in the list with zeros
             # start by replacing 1 with 0
             nums[1] = 0
             # loop over list items until we reach sqrt(nMax)
             i = 2
             while i <= sqrt(nMax):</pre>
                 # if nums[i] is not zero, then it is prime
                 if nums[i] > 0:
                     # replace all multiples of nums[i] with zeros
                     for j in range(2*i, nMax + 1, i):
                         nums[j] = 0
                 # testing: print the current state of nums
                 #print(f"finished i={i}: nums={nums}\n")
                 # increment i
                 i += 1
             # return a list containing all nonzero elements of nums
             return [i for i in nums if i != 0]
```

Here is our function from Friday that returns a list of values of the prime counting function $\pi(x)$.

```
In [2]: # returns a list of values of the prime-counting function π(x), for
    integers x from 1 to nMax
    def computePiVals(nMax):
        # compute a list of primes up to nMax
        primeList = sieveEratosthenes(nMax)
```

```
# make a list of nMax+1 zeros
piVals = [0]*(nMax+1)

# track how many primes we've found so far
count = 0

# loop over integers i from 2 to nMax
for i in range(2, nMax + 1):
    # if i is the next prime, then add 1 to our count
    if count < len(primeList) and i == primeList[count]:
        count += 1 # we found the next prime

# store the current count in piVals[i]
    piVals[i] = count

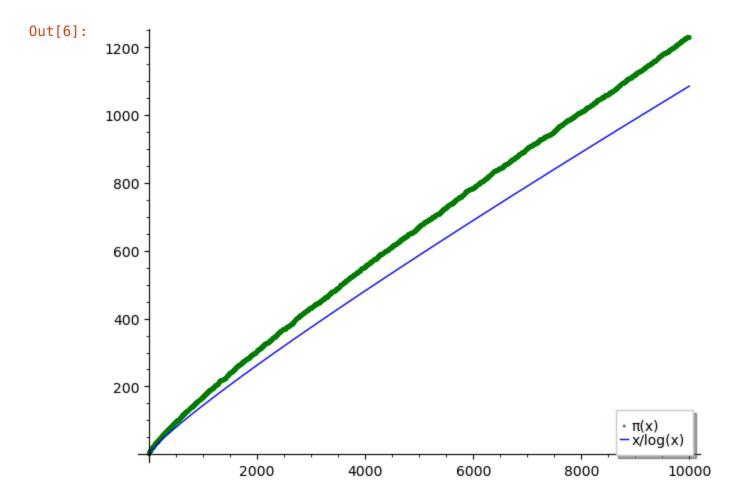
# return the list of piVals
return piVals</pre>
```

Let's make a big list of $\pi(x)$ values for integers x from 0 up to some large M.

```
Out[14]: [0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8]
```

In the homework for today, we considered $\frac{x}{\ln(x)}$ as a possible approximation of $\pi(x)$. Make a plot comparing $\frac{x}{\ln(x)}$ and $\pi(x)$.

```
In [6]:
    xMin = 2
    xMax = 10000
    combined = list_plot(piVals[xMin:xMax], color="green",
    legend_label='\pi(x)') + plot(x/log(x),(x,xMin,xMax),
    legend_label="x/log(x)")
    combined.show(legend_loc="lower right")
```



Density of Primes

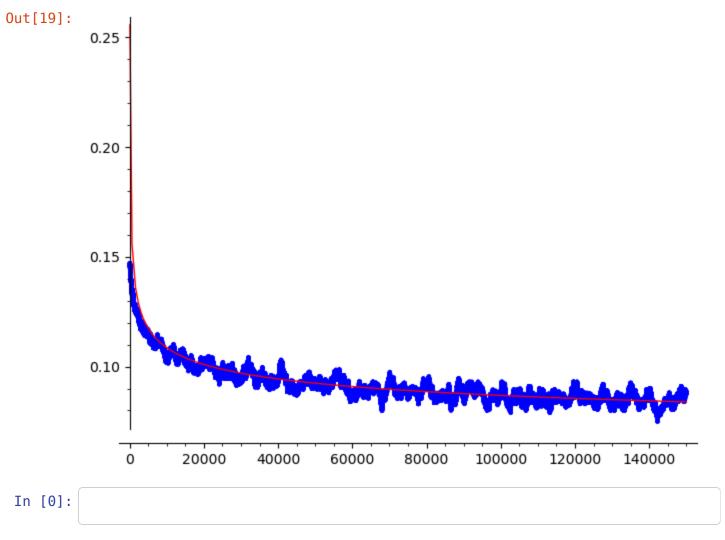
Roughly speaking, the *density* of primes near x is the proportion of integers near x that are prime. We can approximate the density of primes near x by fixing some length ℓ and computing the proportion of integers in the interval $(x,x+\ell)$ that are prime. In other words, the density of primes near x is approximately

$$\frac{\pi(x+\ell)-\pi(x)}{\ell}$$

Complete the following function that approximates the density of primes near x:

```
In [8]: def primeDensity(x, length):
    return (piVals[x+length] - piVals[x])/length
```

Make some plots of your prime density function for different values of \times and length.



In the late eighteenth century, using printed tables of prime numbers, Gauss conjectured that the density of primes near x is approximately $\frac{1}{\ln(x)}$. Can you provide computational evidence for or against Gauss's conjecture?

In [0]:

In [0]:

The Logarithmic Integral

If the density of primes near x is approximately $\frac{1}{\ln(x)}$, then the count of primes up to x should be approximately the integral $\int_0^x \frac{1}{\ln(t)} dt$. This integral has a special name and notation:

Definition: The *logarithmic integral*, $\mathrm{li}(x)$ is defined

$$\mathrm{li}(x) = \int_0^x rac{1}{\mathrm{ln}(t)} dt.$$

This integral is a bit tricky to compute, but fortunately it is already implemented in Sage as li() and also as $log_integral()$.

```
In [0]:
              Compute some values of \mathrm{li}(x). How do they compare to \pi(x) and \frac{x}{\ln(x)}?
 In [0]:
 In [0]:
              Make a plot showing the values of \pi(x), \frac{x}{\ln(x)}, and \mathrm{li}(x). What do you observe?
In [23]:
                xMin = 2
                xMax = 5000
                combined = list_plot(piVals[xMin:xMax], color="green",
                legend_label='π(x)') + plot(x/log(x),(x,xMin,xMax),
legend_label="x/log(x)") + plot( li(x), (x, xMin, xMax),
legend_label='li(x)', color='red')
combined.show(legend_loc="lower right")
Out[23]:
                600
                500
                400
                300
                200
                100
                                                                                                                       · π(x)
– x/log(x)
                                                                                                                        - li(x)
                                          1000
                                                                2000
                                                                                      3000
                                                                                                            4000
                                                                                                                                  5000
 In [0]:
```

The Riemann Zeta Function

To find an even better approximation to the prime counting function, we must learn about a function called the *Riemann zeta function*. This function leads to one of the most important open questions in mathematics, the *Riemann Hypothsis*, which is a statement about the zeros of the Riemann zeta function.

The Riemann zeta function, $\zeta(s)$, is defined

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \cdots$$

The Riemann zeta function converges for all s>1. Moreover, it converges for all *complex* numbers s with real part greater than 1. However, for s=1 the sum diverges, so $\zeta(1)$ is undefined.

Write a Python function below that approximates $\zeta(s)$ by computing a partial sum of numterms terms.

```
In [24]: def zeta(s, numTerms):
    return sum( [1/(n^s) for n in range(1, numTerms+1)] )
```

Use your zeta function to compute decimal approximations of $\zeta(2), \zeta(3), \zeta(4), \ldots$ What do you notice? Can you find closed-form expressions for any of these values?

```
In [29]: zeta(2, 10000).n()
```

Out[29]: 1.64483407184806

```
In [28]: n(pi^2/6)
```

Out[28]: 1.64493406684823

```
In [0]:
```

One connection between the Riemann zeta function and the prime numbers has to do with the following product:

$$\prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}$$

This is a product over all prime numbers p.

Write a Python function below that computes partial products of this infinite product. Take the primes in order, starting with the smallest prime.

```
In [0]: def primeProduct(s, numFactors):
    # YOUR CODE HERE
```

In [0]:	
In [0]:	
_	- (

What is the connection between $\zeta(s)$ and $\prod_{p \; \mathrm{prime}} \; rac{1}{1-p^{-s}}$?