Kernel: SageMath 10.7

Probabilistic Simulation

MATH 242 Modern Computational Math

Sometimes we want to answer questions of the form "what is the probability that...?"
or "what is the average number of...?" These questions may have an exact (that is,
theoretical) answer, but this answer might be very hard to find. However, we can
often use computational simulation to approximate the answer to such questions.

We will begin our study of probabilistic simulation today with some simple problems,
before considering a more complicated problem in the next few class sessions.

First, we need some import statements:

In [11: random()

Out[1]: ©.9622976993297814

Simulating coin flips

Suppose an unfair coin lands on heads with probability p, where 0 < p < 1. First,
we will use a random number generator to simulate such a coin flip and determine
whether it lands on heads.

In [6]: 4 simulating one coin flip

p=20.7

r = random()
print(r)

result = r < 0.7
print(result)

Out[6]: 0.4162060035615126
True

Now simulate k flips and determine the number of heads that occur.

In [11]: 4 simulating the number of heads that occur in k flips of a
coin that lands on heads with probability p

OQut[1l]:

In [18]:

In [19]:

Out[19]:

In [20]:

In [22]:

k = 100

p = 0.

result = [random() < p for i in range(k)]
print(result)

sum(result)

[True, True, True, True, True, True, False, False, True, True,
True, False, False, True, True, True, False, True, True, True,
True, True, False, True, True, True, True, False, True, True,
True, True, True, True, True, True, False, True, True, False,
True, True, True, True, True, True, False, True, True, False,
True, True, True, True, True, True, True, True, True, True,
False, False, True, False, True, False, True, True, True,
True, True, False, True, True, True, False, True, False, True,
True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True,
Falsel

81

Write a function that returns the number of heads that result from k flips of a coin
that lands on heads with probability p.

function that returns the number of heads in k simulated
coin flips of a coin that lands on heads with probability p
def coinFlips(p, k):

result = [random() < p for i in range(k)]

print(result)

return sum(result)

coinFlips (0.7, 100)

82

Now write a function that returns the proportion of heads that result from k flips of a
coin that lands on heads with probability p.

function that returns the proportion of heads in k
simulated flips of a coin that lands on heads with
probability p
def proportionHeads(p, k):

return coinFlips(p, k)/k

proportionHeads (0.7, 10000).n()

Out[22]:

In [26]:

Out[26]:

In [30]:

0.698900000000000

The Law of Large Numbers

In the context of coin flips, the law of large numbers says that as the number of
coin flips increases, the sample proportion of heads converges to the theoretical
proportion (p) of heads.

p=0.2
print(proportionHeads(p, 10).n())
print(proportionHeads(p, 100).n())
print(proportionHeads(p, 1000).n())
print(proportionHeads(p, 10000).n())
print(proportionHeads(p, 100000).n())
print(proportionHeads(p, 1000000).n())

0.300000000000000

0.140000000000000

0.204000000000000

0.201000000000000

0.199940000000000

0.200406000000000

Central Limit Theorem

In the context of coin flips, the central limit theorem says that as the number of
coin flips increases, the distribution of the sample proportion becomes normally
distributed. The mean of the distribution is the theoretical proportion p, and the
variance decreases as the number of coin flips increases.

Let's observe the central limit theorem by plotting the distribution of the proportion of
heads in k flips of our unfair coin.

compute N sample proportions, each of k coin flips
N = 10000

p=0.7

k = 100

S

amples = [proportionHeads(p, k) for i in range(N)]

make a histogram of the proportions

numBins = round((max(samples) - min(samples))*k + 1)
plotMin = min(samples) - 1/(2*k)
plotMax = max(samples) + 1/(2*k)

H = histogram(samples, density=True, color='c’,

edgecolor='k', range=[plotMin, plotMax], bins=numBins,
axes labels=["proportion","relative frequency"],
frame=True, gridlines=True, zorder=2)

display normal distribution
normpdf(x, mu, sigma) = 1/(sqrt(2*pi)*sigma)*exp(-(x -
mu)”~2/(2*sigma”2))

sigma = math.sqrt(p*(1l-p)/k)
P = plot(normpdf(x, p, sigma), (x, plotMin, plotMax),
color="red', thickness=2)

show(H + P)

Out[30]:

h
1

relative frequency
o+

Pd
1

T T T T T T T T T T T T T | T T T T | T T T T T T T T T T T T T T T
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
proportion

Summary of common random number functions in Sage

The following examples demonstrate random number functions that you might want
to use in class or on the homework.

In [311: # random decimal number between 0 and 1: random()
random()

Out[31]: 0.9761602458336965

In [32]:

Out[32]:

In [34]:

Out[34]:

In [1]:

In [2]:

Out[2]:

In [3]:

random number from a range: randrange(min, max, step)
randrange(7)

random selection from a list: choice(list)
testlList = [2, 3, 5,7, 11]
choice(testList)

The Birthday Problem

Here is a classic probability problem that we can approach via simulation.

Suppose that each person's birthday is chosen at random from 365 days in a year.
(Ignore leap years, and suppose that birthdays are uniformly distributed.) How many
people do you need so that the probability that two people share the same birthday
is more than 0.5?

Here is one way to do it. This is certainly not the only way to structure the
code.

generate k birthdays
def generateBirthdays(k):
return [randrange(365) for i in range(Kk)]

print(generateBirthdays(20))

[202, 307, 186, 189, 241, 196, 28, 355, 176, 251, 78, 151,
132, 147, 2, 359, 355, 53, 148, 112]

determine whether a list of birthdays contains a
duplicate birthday
def hasDuplicate(birthdayList):
loop over days
for 1 in range(365):
check if this birthday occurs more than once
if birthdayList.count(i) > 1:
testing: print(f"birthday {i} occurs
{birthdayList.count(i)} times")
return True

In [4]

if we get here, then there is no duplicate birthday
return False

testing
bdays

= generateBirthdays(40)
print(bdays)
hasDuplicate(bdays)

Out[4]: [266, 106, 234, 52, 358, 52, 25, 358, 96, 297, 12, 90, 56,

In [7]

In [8]:

Out[8]

In [9]:

Out[9]:

270, 8, 231, 67, 51, 10, 359, 6, 68, 254, 200, 240, 53, 347,

308, 36, 134, 1, 347, 327, 63, 248, 301, 5, 78, 214, 144]

True

* # estimate the probability of a duplicate birthday
def probDuplicate(numPeople, numTrials):

perform numTrials trials, each finding whether a

group of numPeople people contains a duplicate birthday
[hasDuplicate(generateBirthdays (numPeople))
for 1 in range(numTrials)]

results

return the proportion of the trials that resulted in

a duplicate birthday

return sum(results)/numTrials

testing

probDuplicate(20, 10).n()

+ 0.200000000000000

various numbers of people

numTrials =

10000

for numPeople in range(10, 30):
prob = probDuplicate(numPeople, numTrials)
print(f"for {numPeople} people, the probability of a

duplicate birthday is {prob.n(digits=4)}")

for 10
0.1168
for 11
0.1395
for 12
0.1670
for 13
0.1983
for 14
0.2248
for 15

people,
people,
people,
people,
people,
people,

the probability
the probability
the probability
the probability
the probability

the probability

of
of
of
of
of
of

a

a

duplicate
duplicate
duplicate
duplicate
duplicate

duplicate

birthday
birthday
birthday
birthday
birthday
birthday

now find the probability of a duplicate birthday for

is
is
is
is
is

is

263512 people, the probability of a duplicate birthday is
26381§ people, the probability of a duplicate birthday is
26?223 people, the probability of a duplicate birthday is
26?4ig people, the probability of a duplicate birthday is
26?835 people, the probability of a duplicate birthday is
26?13? people, the probability of a duplicate birthday is
26?423 people, the probability of a duplicate birthday is
26?7;g people, the probability of a duplicate birthday is
26?122 people, the probability of a duplicate birthday is
26?322 people, the probability of a duplicate birthday is
26?632 people, the probability of a duplicate birthday is
26?93; people, the probability of a duplicate birthday is
26?3;g people, the probability of a duplicate birthday is
gézjgé people, the probability of a duplicate birthday is

It looks like we need at least 23 people so that the probability of a duplicate
birthday is at least 0.5.

If you found the answer to the birthday problem above, then consider one or more of
the following questions.

Given N people:
« What is the probability that at least K people share the same birthday?
« What is the probability that exactly K people share the same birthday?
« What is the probability that two people share consecutive birthdays?

« What is the probability that K people have birthdays within A days of each
other.

To make these problems more concrete, you may choose specific values for
parameters such as NV and K.

In [0]:

In [0]:

In [0]:

