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Probabilistic Simulation
MATH 242 Modern Computational Math

Sometimes we want to answer questions of the form "what is the probability that...?"
or "what is the average number of...?" These questions may have an exact (that is,
theoretical) answer, but this answer might be very hard to find. However, we can
often use computational simulation to approximate the answer to such questions.

We will begin our study of probabilistic simulation today with some simple problems,
before considering a more complicated problem in the next few class sessions.

First, we need some import statements:

In [1]:

Out[1]: 0.9622976993297814

Simulating coin flips

Suppose an unfair coin lands on heads with probability , where . First,
we will use a random number generator to simulate such a coin flip and determine
whether it lands on heads.

In [6]:

Out[6]: 0.4162060035615126

True

Now simulate  flips and determine the number of heads that occur.

In [11]:

random()

p 0 < p < 1

# simulating one coin flip

p = 0.7

r = random()

print(r)

result = r < 0.7

print(result)

k

# simulating the number of heads that occur in k flips of a 

coin that lands on heads with probability p



Out[11]: [True, True, True, True, True, True, False, False, True, True, 

True, False, False, True, True, True, False, True, True, True, 

True, True, False, True, True, True, True, False, True, True, 

True, True, True, True, True, True, False, True, True, False, 

True, True, True, True, True, True, False, True, True, False, 

True, True, True, True, True, True, True, True, True, True, 

False, False, True, False, True, False, True, True, True, 

True, True, False, True, True, True, False, True, False, True, 

True, True, True, True, True, True, True, True, True, True, 

True, True, True, True, True, True, True, True, True, True, 

False]

81

Write a function that returns the number of heads that result from  flips of a coin
that lands on heads with probability .

In [18]:

In [19]:

Out[19]: 82

Now write a function that returns the proportion of heads that result from  flips of a
coin that lands on heads with probability .

In [20]:

In [22]:

k = 100

p = 0.7

result = [ random() < p for i in range(k) ]

print(result)

sum(result)

k

p

# function that returns the number of heads in k simulated 

coin flips of a coin that lands on heads with probability p

def coinFlips(p, k):

    result = [ random() < p for i in range(k) ]

    # print(result)

    return sum(result)

coinFlips(0.7, 100)

k

p

# function that returns the proportion of heads in k 

simulated flips of a coin that lands on heads with 

probability p

def proportionHeads(p, k):

    return coinFlips(p, k)/k

proportionHeads(0.7, 10000).n()



Out[22]: 0.698900000000000

The Law of Large Numbers

In the context of coin flips, the law of large numbers says that as the number of
coin flips increases, the sample proportion of heads converges to the theoretical
proportion ( ) of heads.

In [26]:

Out[26]: 0.300000000000000

0.140000000000000

0.204000000000000

0.201000000000000

0.199940000000000

0.200406000000000

Central Limit Theorem

In the context of coin flips, the central limit theorem says that as the number of
coin flips increases, the distribution of the sample proportion becomes normally
distributed. The mean of the distribution is the theoretical proportion , and the

variance decreases as the number of coin flips increases.

Let's observe the central limit theorem by plotting the distribution of the proportion of
heads in  flips of our unfair coin.

In [30]:

p

p=0.2

print( proportionHeads(p, 10).n() )

print( proportionHeads(p, 100).n() )

print( proportionHeads(p, 1000).n() )

print( proportionHeads(p, 10000).n() )

print( proportionHeads(p, 100000).n() )

print( proportionHeads(p, 1000000).n() )

p

k

# compute N sample proportions, each of k coin flips

N = 10000

p = 0.7

k = 100

samples = [proportionHeads(p, k) for i in range(N)]

# make a histogram of the proportions

numBins = round((max(samples) - min(samples))*k + 1)

plotMin = min(samples) - 1/(2*k)

plotMax = max(samples) + 1/(2*k)

H = histogram(samples, density=True, color='c', 



Out[30]:

Summary of common random number functions in Sage

The following examples demonstrate random number functions that you might want
to use in class or on the homework.

In [31]:

Out[31]: 0.9761602458336965

edgecolor='k', range=[plotMin, plotMax], bins=numBins, 

axes_labels=["proportion","relative frequency"], 

frame=True, gridlines=True, zorder=2)

# display normal distribution

normpdf(x, mu, sigma) = 1/(sqrt(2*pi)*sigma)*exp(-(x - 

mu)^2/(2*sigma^2))

sigma = math.sqrt(p*(1-p)/k)

P = plot(normpdf(x, p, sigma), (x, plotMin, plotMax), 

color='red', thickness=2)

show(H + P)

# random decimal number between 0 and 1: random()

random()



In [32]:

Out[32]: 5

In [34]:

Out[34]: 7

The Birthday Problem

Here is a classic probability problem that we can approach via simulation.

Suppose that each person's birthday is chosen at random from 365 days in a year.
(Ignore leap years, and suppose that birthdays are uniformly distributed.) How many
people do you need so that the probability that two people share the same birthday
is more than 0.5?

Here is one way to do it. This is certainly not the only way to structure the
code.

In [1]:

In [2]:

Out[2]: [202, 307, 186, 189, 241, 196, 28, 355, 176, 251, 78, 151, 

132, 147, 2, 359, 355, 53, 148, 112]

In [3]:

# random number from a range: randrange(min, max, step)

randrange(7)

# random selection from a list: choice(list)

testList = [2, 3, 5,7, 11]

choice(testList)

# generate k birthdays

def generateBirthdays(k):

    return [randrange(365) for i in range(k)]

print( generateBirthdays(20) )

# determine whether a list of birthdays contains a 

duplicate birthday

def hasDuplicate(birthdayList):

    # loop over days

    for i in range(365):

        # check if this birthday occurs more than once

        if birthdayList.count(i) > 1:

            # testing: print(f"birthday {i} occurs 

{birthdayList.count(i)} times")

            return True



In [4]:

Out[4]: [266, 106, 234, 52, 358, 52, 25, 358, 96, 297, 12, 90, 56, 

270, 8, 231, 67, 51, 10, 359, 6, 68, 254, 200, 240, 53, 347, 

308, 36, 134, 1, 347, 327, 63, 248, 301, 5, 78, 214, 144]

True

In [7]:

In [8]:

Out[8]: 0.200000000000000

In [9]:

Out[9]: for 10 people, the probability of a duplicate birthday is 

0.1168

for 11 people, the probability of a duplicate birthday is 

0.1395

for 12 people, the probability of a duplicate birthday is 

0.1670

for 13 people, the probability of a duplicate birthday is 

0.1983

for 14 people, the probability of a duplicate birthday is 

0.2248

for 15 people, the probability of a duplicate birthday is 

    # if we get here, then there is no duplicate birthday

    return False

# testing

bdays = generateBirthdays(40)

print(bdays)

hasDuplicate(bdays)

# estimate the probability of a duplicate birthday

def probDuplicate(numPeople, numTrials):

    # perform numTrials trials, each finding whether a 

group of numPeople people contains a duplicate birthday

    results = [hasDuplicate(generateBirthdays(numPeople)) 

for i in range(numTrials)]

    # return the proportion of the trials that resulted in 

a duplicate birthday

    return sum(results)/numTrials

# testing

probDuplicate(20, 10).n()

# now find the probability of a duplicate birthday for 

various numbers of people

numTrials = 10000

for numPeople in range(10, 30):

    prob = probDuplicate(numPeople, numTrials)

    print(f"for {numPeople} people, the probability of a 

duplicate birthday is {prob.n(digits=4)}")



0.2543

for 16 people, the probability of a duplicate birthday is 

0.2844

for 17 people, the probability of a duplicate birthday is 

0.3234

for 18 people, the probability of a duplicate birthday is 

0.3424

for 19 people, the probability of a duplicate birthday is 

0.3822

for 20 people, the probability of a duplicate birthday is 

0.4136

for 21 people, the probability of a duplicate birthday is 

0.4493

for 22 people, the probability of a duplicate birthday is 

0.4711

for 23 people, the probability of a duplicate birthday is 

0.5102

for 24 people, the probability of a duplicate birthday is 

0.5381

for 25 people, the probability of a duplicate birthday is 

0.5649

for 26 people, the probability of a duplicate birthday is 

0.6047

for 27 people, the probability of a duplicate birthday is 

0.6319

for 28 people, the probability of a duplicate birthday is 

0.6571

for 29 people, the probability of a duplicate birthday is 

0.6791

It looks like we need at least 23 people so that the probability of a duplicate
birthday is at least 0.5.

If you found the answer to the birthday problem above, then consider one or more of
the following questions.

Given  people:

What is the probability that at least  people share the same birthday?

What is the probability that exactly  people share the same birthday?

What is the probability that two people share consecutive birthdays?

What is the probability that  people have birthdays within  days of each
other.

N

K

K

K Δ



To make these problems more concrete, you may choose specific values for
parameters such as  and .

In [0]:

In [0]:

In [0]:

N K


