$\left.\begin{array}{ll}\text { Practice: } 82 \%-B \\ \text { Projects: } 1 E, 3 M, 1 R-B \\ \text { Final: } & E-A \\ \text { Challenge: } & 1 M-B\end{array}\right\} B+$

ARCHIMEDES'S METHOD:

Square: side length $S_{2}=\sqrt{2}$
approx: $\pi_{2}^{i}=\frac{4 \sqrt{2}}{2}=2 \sqrt{2} \approx 2.82 \ldots$
Octagon: find side length

$$
\begin{aligned}
& a=\sqrt{1^{2}-\left(\frac{\sqrt{2}}{2}\right)^{2}}=\frac{1}{\sqrt{2}} \\
& b=1-a=1-\frac{1}{\sqrt{2}} \\
& s_{3}=\sqrt{b^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}}=\sqrt{\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}}=\sqrt{2-\sqrt{2}} \\
& \text { prox: } \pi_{3}^{\prime}=\frac{8 s_{3}}{2}=4 \sqrt{2-\sqrt{2}} \approx 3.06 \ldots
\end{aligned}
$$

Repeat...
16-gon: compote side length S_{4}

