$$
\arctan (x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
$$

MADHAVA's FORMULA
If $x=1$, then:

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots
$$

Let $n=$ number of terms,
and $m=$ number of correct digits.
We observe that $m=\log _{0}(n)$, so finding 8 correct digits requires 10^{8} terms.

Machin's Formula:

$$
\frac{\pi}{4}=4 \cdot \arctan \left(\frac{1}{5}\right)-\arctan \left(\frac{1}{239}\right)
$$

