The Logistic Map

$$
f_{r}(x)=r \cdot x(1-x), \quad \begin{aligned}
& 0 \leq r \leq 4 \\
& 0 \leq x \leq 1
\end{aligned}
$$

If $0 \leq r \leq 1$, then trajectories connage to zero.
If $1<r \leq 3$, then trajectories converge to $x=\frac{r-1}{r}$.
If $3<r<3.44$, then trajectories oscillate between 2 values
 in the long ran.
As r increases beyond 3.44, we observe a sequence of period-dabling bifurcation.

CHAOS: Chaotic trajectories satisfy:

1. They are not periodic. They never repeat exactly.
2. They visit every small interval in the domain.
3. They exhibit sensitive dependence on initial conditions.

If you change the initial value a tiny bit, then the longsterm behavior is completely different.

Investigate trajectories for $r=4$.

