

(a) Identify the possible values of Y.

(b) Sketch the graph Y = y in the x_1x_2 -plane.

(c) Find the region R in the x_1x_2 -plane where $Y \leq y$.

(d) Find the cdf $F_Y(y)$ by integrating the joint density of X_1 and X_2 over the region R.

(e) Differentiate $F_Y(y)$ to obtain the density $f_Y(y)$.

2.	Let X_1 and X_2 be uniformly distributed on the region of the x_1x_2 -plane defined by $0 \le x_1$, $0 \le x_2$, and
	$x_1 + x_2 \le 1$ Let $Y = X_1 + X_2$ Find the density of Y

3. The joint density of
$$X_1$$
 and X_2 is $f(x_1, x_2) = 4e^{-2(x_1+x_2)}$. Find the density of $Y = \frac{X_1}{X_1+X_2}$.

4. Let the point (X,Y) be randomly selected in the first quadrant of the xy-plane according to the density $f(x,y)=\frac{4}{\pi}e^{-x^2-y^2}$. Let R be the distance from (X,Y) to the origin. Find the density of R.