Math 262

Section 3.4

- 1. Suppose that the time between goals in a hockey game is exponentially distributed with mean 18 minutes (ignore timeouts and stoppages). Let X be the time from the start of the game until the second goal occurs.
 - (a) Sketch the pdf of X.

(b) What is the probability that the second goal occurs less than 30 minutes after the game starts?

- 2. Suppose that a call center receives calls according to a Poisson distribution at a rate of 2 calls per minute. Let Y be the time between 10:00am and the 5^{th} call received after 10:00am.
 - (a) Sketch the pdf of Y.

(b) What are the mean and variance of Y?

(c) What is P(Y < 1)?

- 3. For large α , the gamma distribution converges to a normal distribution with mean $\alpha\beta$ and variance $\alpha\beta^2$. Investigate this in the case that $\beta = 1$.
 - (a) Let $X \sim \text{Gamma}(10, 1)$. Use technology to compute $P(X \leq x)$, for various values of x.

(b) Let $Z \sim N(10, \sqrt{10})$. Use technology to compute $P(Z \le x)$ for the same values of x that you used in part (a). Do you find the probabilities to be close to what you found in part (a)?

(c) Now choose a larger value of α , such as $\alpha = 100$. Compute several probabilities to verify that $X \sim \text{Gamma}(\alpha, 1)$ has nearly the same distribution as $Z \sim N(\alpha, \sqrt{\alpha})$.

4. The skewness coefficient of the distribution of random variable X is defined

$$\gamma = \frac{E[(X-\mu)^3]}{\sigma^3}$$

Compute the skewness of X. What does this tell you about the Gamma distribution?

★ BONUS: Why is $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$? First, use the definition of $\Gamma(\alpha)$ to express $\Gamma\left(\frac{1}{2}\right)$ as an integral. Then make the change of variables $y = \sqrt{2x}$ and relate the resulting expression to the normal distribution.

Math 262

Problems for Review and Practice

- 1. An interviewer is given a long list of people that she can interview. When asked, suppose that each person independently agrees to be interviewed with probability 0.45. The interviewer must conduct ten interviews. Let X be the number of people she must ask to be interviewed in order to obtain ten interviews.
 - (a) What is the probability that the interviewer will obtain ten interviews by asking no more than 18 people?
 - (b) What are the expected value and variance of the number of people who *decline* to be interviewed before the interviewer finds ten who agree?
- 2. Let $X \sim \text{Geom}(p)$. Find the expected value of $\frac{1}{X}$. Simplify your answer as much as possible.
- 3. Suppose that $X \sim \text{Exp}(3)$, and let $Y = \lfloor X \rfloor$ denote the largest integer that is less than or equal to X. For example, $\lfloor 2.1 \rfloor = 2$, $\lfloor 5.99 \rfloor = 5$, and $\lfloor 14 \rfloor = 14$.
 - (a) Is Y a discrete or continuous random variable?
 - (b) Find $P(Y \leq 1)$.
 - (c) Find P(Y = 2).
 - (d) Can you generalize? What is P(Y = n), for any positive integer n? Is the distribution of Y one of the distributions that we have studied in this course?
- 4. Let $X \sim \text{Unif}[0, 1]$. Compute the *n*th moment of X in two different ways.
 - (a) Use the formula $E(X^n) = \int_0^1 x^n dx$.
 - (b) Use the moment generating function $M_X(t)$.
- 5. Choose a point uniformly at random in a unit square (i.e., a square of side length 1). Let X be the distance from the point chosen to the nearest edge of the square. Find the cdf of X. (*Hint*: draw a picture!) Then find the pdf of X.