BINOMIAL COEFFIENTS - A CLOSER LOOK
$\binom{n}{k}$ - "n choose k ", the number of ways of selecting k items from n, without replacement, order unimportant

Consider: $\quad(a+b)^{3}=(a+b)(a+b)(a+b)=\binom{3}{3} a^{3}+\binom{3}{2} a^{2} b+\binom{3}{1} a b^{2}+\binom{3}{0} b^{3}$ all 3 factors 2 of 3 terms

$$
(a+b)^{3}=1 a^{3}+3 a^{2} b+3 a b^{2}+1 b^{3}
$$

More generally: $(a+b)^{n}=\binom{n}{n} a^{n}+\binom{n}{n-1} a^{n-1} b+\binom{n}{n-2} a^{n-2} b+\cdots+\binom{n}{0} b^{n}$

They also appear in Pascal's triangle!
Key propoty: $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad \begin{array}{ccccccc}1 & 1 & 3^{2} & 1 & 1\end{array}$

	ORDER IMPORT ANT	ORDER
NOT MPORTANT		
WITH REPLACEMENT	n^{k}	$\binom{k+n-1}{k}=\frac{(k+n-1)!}{(n-1)!k!}$
WIT HOUR REPLACEMENT	Permutations	Combinations $(n-k)!$

n : number of possibilities
k : number of items to select

